Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика, часть I. Конспект лекций.doc
Скачиваний:
188
Добавлен:
07.11.2018
Размер:
4.76 Mб
Скачать

3.1.2 Момент инерции. Теорема Штейнера

Как мы уже говорили в разделе «кинематика», для упрощения математического описания вращательного движения удобно использовать характеристики, связанные не с линейным перемещением объёкта, а с угловым (углом поворота, угловой скоростью, угловым ускорением). При этом получаемые формулы по структуре оказываются подобны тем, которые выводятся в кинематике поступательного движения. Данный подход используется и в динамике вращательного движения, для описания которого можно ввести свои характеристики – аналоги ряда характеристик, используемых в динамике поступательного движения.

Прошлую лекцию мы начали с обсуждения понятия «масса» тела. Аналогом массы (мерой инертных свойств тела) при описании вращения является момент инерции.

Моментом инерции материальной точки относительно некоторой оси называется выражение вида

Imr2, (3.3)

где m – масса точки, r – расстояние до этой оси.

Момент инерции тела (которое можно представить в виде совокупности материальных точек – см. рис. 3.4.а), рассчитывается по формуле

I, (3.4)

в которой знак интеграла означает суммирование моментов инерции всех точек с массами dm, из которых состоит тело массой M, причём каждая из них находится на своём расстоянии r от выбранной оси.

На практике тело удобно представлять в виде набора из N частей, каждую из которых с хорошей точностью можно считать точечной массой mi, находящейся на расстоянии ri от оси (рис. 3.4.б), и тогда момент инерции тела может быть рассчитан, как

I. (3.5)

Из определения момента инерции следует, что его величина зависит не только от общей массы тела, но также и от формы тела и от распределения массы по его объёму (какие-то части тела, например, могут быть изготовлены из более тяжёлого материала, а какие-то – из более лёгкого).

Очевидно: момент инерции неодинаков относительно разных осей, и поэтому, решая задачи на динамику вращательного движения, момент инерции тела относительно интересующей нас оси каждый раз приходится искать отдельно. Так, например, при конструировании технических устройств, содержащих вращающиеся детали (на железнодорожном транспорте, в самолетостроении, электротехнике и т. д.), требуется знание величин моментов инерции этих деталей. При сложной форме тела теоретический расчет его момента инерции может оказаться трудно выполнимым. В этих случаях предпочитают измерить момент инерции нестандартной детали опытным путем.

В некоторых случаях теоретический расчёт момента инерции достаточно прост. В качестве примера рассмотрим, как выводится выражение для I тонкого однородного кольца массой M и радиусом R относительно оси, проходящей через центр кольца перпендикулярно его плоскости (рис. 3.5).

Выделим на нашем кольце малый элемент массой dm. Поскольку он находится от оси вращение на расстоянии, равном радиусу кольца R, его момент инерции dI равен R2dm. Просуммировать моменты инерции всех элементов кольца означает взять интеграл вида I. Учитывая, что для всех элементов расстояние R до оси вращения одинаково, множитель R2 вынесем за знак интеграла, и, так как M, получим, что момент инерции кольца массой M и радиусом R относительно оси, проходящей через кольца перпендикулярно его плоскости

IMR2. (3.6)

Очевидно, что, поскольку толщина h кольца в итоговую формулу не входит, полученное выражение оказывается справедливым также для тонкого обруча и тонкостенного цилиндра.

Ось вращения может проходить через центр масс тела, а может и не проходить через него (рис. 3.6). В последнем случае для вычисления момента инерции пользуются теоремой Штейнера.

Согласно этой теореме, момент инерции тела I относительно произвольной оси равен сумме момента инерции I0 относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела M на квадрат расстояния d между осями:

II0Md2. (3.7)

На рис. 3.7 момент инерции I тела относительно вертикальной оси ОО равен моменту инерции I0 относительно вертикальной же оси ОО плюс выражение Md2. Существенно, что момент инерции I0 определяется не относительно оси симметрии КК тела (иногда он бывает известен из теории), именно относительно оси ОО, параллельной выбранной оси ОО.

В заключение в виде примеров приведём значения моментов инерции некоторых тел:

– момент инерции однородного диска (цилиндра) массой M и радиусом R относительно оси симметрии:

IMR2;

– момент инерции однородного шара массой M и радиусом R относительно оси, проходящей через его центр:

IMR2;

– момент инерции тонкого однородного стержня массой M и длиной l относительно оси, проходящей через его центр перпендикулярно самому стержню:

IMl2.

В общем случае момент инерции твёрдого тела IkML2, где M – его масса, L – некоторый геометрический параметр, k – коэффициент, зависящий от формы тела и его положения относительно интересующей нас оси. Заметим: от размеров тела R может зависеть и его масса. Так, моменты инерции двух изготовленных из одного материала однородных шаров, радиус одного из которых в два раза больше радиуса другого, будут отличаться не в четыре, как это могло бы показаться на первый взгляд, а в целых 32 раза! Это вызвано тем, что возрастание радиуса в два раза означает восьмикратное увеличение массы шара (объём V  4/3R3, M  V, где  – плотность материала шаров).

В СИ единицей измерения момента инерции является кгм2.