Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика экзамен.doc
Скачиваний:
12
Добавлен:
21.04.2019
Размер:
393.73 Кб
Скачать

49 Радиоактивный распад ядер.

Радиоакти́вный распа́д— спонтанное изменение состава нестабильных атомных ядер (заряда Z, массового числа A) путём испускания элементарных частиц или ядерных фрагментов[1]. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие элементы радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).Естественная радиоактивность — самопроизвольный распад ядер элементов, встречающихся в природе.Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.Энергетические спектры α-частиц и γ-квантов, излучаемых радиоактивными ядрами, прерывистые («дискретные»), а спектр β-частиц — непрерывный.Распад, сопровождающийся испусканием альфа-частиц, назвали альфа-распадом; распад, сопровождающийся испусканием бета-частиц, был назван бета-распадом (в настоящее время известно, что существуют типы бета-распада без испускания бета-частиц, однако бета-распад всегда сопровождается испусканием нейтрино или антинейтрино). Термин «гамма-распад» применяется редко; испускание ядром гамма-квантов называют обычно изомерным переходом. Гамма-излучение часто сопровождает другие типы распада.В настоящее время, кроме альфа-, бета- и гамма-распадов, обнаружены распады с эмиссией нейтрона, протона (а также двух протонов), кластерная радиоактивность, спонтанное деление. Электронный захват, позитронный распад (или β + -распад), а также двойной бета-распад (и его виды) обычно считаются различными типами бета-распада.Некоторые изотопы могут испытывать одновременно два или более видов распада. Например, висмут-212 распадается с вероятностью 64 % в таллий-208 (посредством альфа-распада) и с вероятностью 36 % в полоний-212 (посредством бета-распада).Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро, а последовательность возникающих при этом нуклидов называется радиоактивным рядом. В частности, для радиоактивных рядов, начинающихся с урана-238, урана-235 и тория-232, конечными (стабильными) нуклидами являются соответственно свинец-206, свинец-207 и свинец-208.

48 Атомное ядро. Энергия связи.

А́томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относится атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.

Атомные ядра изучает ядерная физика.

Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным [сн 1] и связанным с ним магнитным моментом.

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.

Количество протонов в ядре называется его зарядовым числом  — это число равно порядковому номеру элемента, к которому относится атом в таблице Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов — называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом (очевидно ) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами

Основная статья: Дефект массы

Подробнее см. также: Капельная модель ядра

Большая энергия связи нуклонов, входящих в ядро, говорит о существовании ядерных сил, поскольку известные гравитационные силы слишком малы, чтобы преодолеть взаимное электростатическое отталкивание протонов в ядре. Связь нуклонов осуществляется чрезвычайно короткоживущими силами, которые возникают вследствие непрерывного обмена частицами, называемыми пи-мезонами, между нуклонами в ядре.

Экспериментально было обнаружено, что для всех стабильных ядер масса ядра меньше суммы масс составляющих его нуклонов, взятых по отдельности. Эта разница называется дефектом массы или избытком массы и определяется соотношением:

,

где и  — массы свободного протона и нейтрона,  — масса ядра.

Согласно принципу эквивалентности массы и энергии дефект массы представляет собой массу, эквивалентную работе, затраченной ядерными силами, чтобы собрать все нуклоны вместе при образовании ядра. Эта величина равна изменению потенциальной энергии нуклонов в результате их объединения в ядро.

Энергия, эквивалентная дефекту массы, называется энергией связи ядра и равна:

,

где  — скорость света в вакууме.

Другим важным параметром ядра является энергия связи, приходящаяся на один нуклон ядра, которую можно вычислить, разделив энергию связи ядра на число содержащихся в нём нуклонов:

  1. Примесные и собственные полупроводники.

Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры[1].

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства диэлектриков.

45. Реальные кристаллы. Дефекты

Реальный кристалл

Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство — закономерное положение атомов в кристаллической решётке.

Дефектами кристалла называют всякое нарушение трансляционной симметрии кристалла — идеальной периодичности кристаллической решётки. Различают несколько разновидностей дефектов по размерности. А именно, бывают нульмерные (точечные), одномерные (линейные), двумерные (плоские) и трёхмерные (объемные) дефекты.

К нульмерным (или точечным дефектам) кристалла относят все дефекты, которые связаны со смещением или заменой небольшой группы атомов (собственные точечные дефекты), а также с примесями. Они возникают при нагреве, легировании, в процессе роста кристалла и в результате радиационного облучения.

Одномерные дефекты

Одномерные (линейные) дефекты представляют собой дефекты кристалла, размер которых по одному направлению много больше параметра решетки, а по двум другим — соизмерим с ним. К линейным дефектам относят дислокации и дисклинации.

Двумерные дефекты

Основной дефект-представитель этого класса — поверхность кристалла. Другие случаи — границы зёрен материала, в том числе малоугловые границы (представляют собой ассоциации дислокаций), плоскости двойникования, поверхности раздела фаз и др.

Трёхмерные дефекты

Объёмные дефекты. К ним относятся скопления вакансий, образующие поры и каналы; частицы, оседающие на различных дефектах (декорирующие), например пузырьки газов, пузырьки маточного раствора; скопления примесей в виде секторов (песочных часов) и зон роста. Как правило, это поры или включения примесных фаз. Представляют собой конгломерат из многих дефектов.

44 Типы межатомной связи в молекулах и кристаллах.

Ионная связь

Ионная связь характерна для соединений, у которых один элемент является металлом, а другой близок к последней группе Периодической системы элементов, например для щелочно-галоидных соединений (NaCl, KBr, LiF) ионная связь представляет собой кулоновское взаимодействие разноименно заряженных ионов. Однако электростатические силы не в состоянии удержать систему в равновесии, поэтому ионная связь никогда не бывает "чистой". При сближении ионов возникают силы отталкивания неэлектростатической природы. Это квантовомеханические силы, обусловленные принципом Паули. Согласно этому фундаментальному принципу квантовой механики, два электрона с одинаково направленными спинами (спин - внутренняя квантовая степень свободы, собственный момент вращения частицы) не могут находиться в одном и том же квантовом состоянии, то есть на одном и том же энергетическом уровне. Поэтому электронные оболочки атомов не могут проникать друг в друга, они отталкиваются. Общий характер зависимости энергии связи от межатомного расстояния для ионного типа связи показан на рис. 1. Такой вид энергии означает, что на больших расстояниях между атомами действуют силы притяжения, медленно стремящиеся к нулю при (кулоновское притяжение разноименных ионов), а на достаточно близких расстояниях превалируют силы отталкивания, быстро стремящиеся к бесконечности при (квантовомеханические силы, определяемые принципом Паули). r0 определяет положение устойчивого равновесия и является постоянной решетки.

Рис. 1. Энергия связи ионного соединения. Vрез(r) - результирующая энергия связи, Vот - энергия отталкивания, Vпр - энергия притяжения, r0 - равновесное межатомное расстояние, соответствующее минимуму энергии связи.

Ван-дер-ваальсова связь

Даже в тех атомах и молекулах, электрический дипольный момент которых равен нулю, будет существовать флуктуирующий дипольный момент, связанный с мгновенным положением электрона в атоме. Мгновенное электрическое поле, связанное с этим моментом, приведет к возникновению индуцированного дипольного момента в соседних атомах. В среднем взаимодействие дипольного момента исходного атома с индуцированными дипольными моментами соседних атомов приведет к притяжению между атомами, что выгодно энергетически, так как понижается энергия системы. Энергия ван-дер-ваальсова взаимодействия убывает с расстоянием как 1/r6: случайно возникший дипольный момент создает электрическое поле . Это поле поляризует соседний атом, создавая диполь ( - диэлектрическая восприимчивость). Энергия взаимодействия этих диполей равна потенциальной энергии диполя в поле , . Более строгий квантовомеханический расчет приводит к тому же результату. Величина энергии связи для кристаллов с ван-дер-ваальсовым взаимодействием на один-два порядка меньше, чем у ионных, поэтому соответствующие вещества имеют низкую точку плавления и кипения. Ван-дер-ваальсова связь преобладает в благородных газах, кристаллизующихся при температурах порядка 10-100 K, в молекулярных кристаллах, которые построены не из отдельных атомов, а из молекул. Таковыми являются водород, в узлах решетки которого находятся молекулы H2, фуллерены - кристаллы, состоящие из молекул, содержащих шестьдесят атомов углерода (C60), и др.