Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика, часть I. Конспект лекций.doc
Скачиваний:
188
Добавлен:
07.11.2018
Размер:
4.76 Mб
Скачать

Лекция 17 электромагнитное поле

17.1 ЭЛЕКТРОМАГНЕТИЗМ

17.1.1 Явление электромагнитной индукции

17.1.2 Явление самоиндукции

17.1.3 Явление взаимной индукции

17.1.4 Энергия магнитного поля

17.1.5 Система уравнений Максвелла

Некоторые примеры

Контрольные вопросы

17.1 Электромагнетизм

17.1.1 Явление электромагнитной индукции

Если взять замкнутый проводящий контур (например, круговой виток провода), то при поднесении к нему постоянного магнита в витке возникнет электрический ток; аналогичный эффект возникает и при удалении магнита от витка, ток при этом идёт в противоположном направлении. То, что электрическое поле способно породить магнитное (при прохождении по проводнику постоянного электрического тока) было открыто Эрстедом в 1820 году, для установления обратного эффекта, то есть того, что магнитное поле способно порождать электрическое, понадобилось еще десять лет. Существенным здесь оказалось то, что для проявления эффекта магнитное поле должно меняться со временем.

Открытое в 1831 году Фарадеем явление электромагнитной индукции заключается в возникновении э. д. с. при изменении магнитного потока через поверхность, ограниченную замкнутым контуром или заметаемую проводником в процессе движения.

Направление протекания тока в замкнутом контуре определяется по правилу Ленца: индукционный ток всегда направлен так, чтобы препятствовать причине, его вызывающей.

Пример 1

Пусть к замкнутому проволочному контуру северным полюсом приближается постоянный магнит (см. рис. 17.1). Как будет направлен ток, индуцируемый при этом в контуре?

Прежде всего, объясним, почему ток вообще возникнет. Приближение магнита к контуру (стрелка 1) означает, что магнитное поле, в котором находится виток, становится всё более и более сильным (его индукция возрастает), увеличивается и магнитный поток  через площадь, ограниченную контуром. Увеличение магнитного потока (то есть, его изменение) приводит к возникновению э. д. с. индукции в контуре, и по нему начинает идти ток.

Для ответа на вопрос о направлении тока сначала следует нарисовать линии индукции поля магнита (на рисунке они направлены вниз). Теперь применим правило Ленца: «индукционный ток должен препятствовать причине, его вызывающей». Для того, чтобы воспрепятствовать возрастанию потока, образованного полем, линии индукции которого направлены вниз, необходимо создать в контуре ток, магнитное поле которого характеризуется линиями индукции, направленными вверх. Если вспомнить картину силовых линий, создаваемых кольцом с током (рис. 13.2.в) и применить правило винта, легко понять, что возникающий ток должен иметь направление, указанное на рисунке стрелкой I1.

Если магнит удаляется от контура (стрелка 2), магнитный поток уменьшается. Препятствовать этому уменьшению можно, лишь создав индукционный ток, линии индукции которого будут теперь направлены вниз – : ток пойдёт в направлении стрелки I2.

Пример 2

Пусть прямой, параллельный оси Z проводник, имеющий длину l, движется поступательно со скоростью u вдоль оси X в плоскости XZ, находясь в однородном магнитном поле c индукцией B, силовые линии которого направлены вдоль оси Y (рис. 17.2).

При движении проводника в магнитном поле на находящиеся в нём заряды действует сила Лоренца. В металле перемещаться могут лишь электроны, и под действием этой силы они начинают смещаться к дальнему от нас концу проводника, в результате чего он заряжается отрицательно (а ближний конец – положительно). Накопление зарядов происходит до тех пор, пока сила , действующая на электрон со стороны возникшего электрического поля, не уравновесит силу Лоренца , при этом между концами проводника создаётся разность потенциалов j1 - j2. Так как FЛ = euB (здесь e – заряд электрона, а u – скорость его движения вместе с проводником, причём угол между векторами и равен 90°), а FЭ = eE, где E – напряжённость возникшего электрического поля, то, с учётом того, что связь между напряжённостью E и разностью потенциалов на концах проводника выражается формулой E = (j1 - j2)/l, можно записать: euB = e(j1 - j2)/l, или

j1 - j2 = luB. (17.1)

В нашем случае сила Лоренца играет роль сторонней, разделяющей заряды в движущемся проводнике. Запишем закон Ома для участка неоднородной цепи: I(R + r) = j1 - j2 + E. Поскольку в состоянии равновесия ток по проводнику не идёт (I = 0), следовательно,

E = -(j1 - j2) = - luB = - lB = - B = - B,

где dS – площадь, заметаемая проводником в процессе движения.

Если учесть, что dSBdМ, где dМ – магнитный поток через поверхность dS, то окончательная формула будет выглядеть так:

E = -. (17.2)

Данная формула оказывается справедливой не только при поступательном, но и при вращательном движении проводника, причём вектор скорости не обязательно должен быть перпендикулярен силовым линиям. Аналогичное выражение описывает возникновение э. д. с. и в замкнутом контуре при изменении магнитного потока через мысленно натянутую на него поверхность. При этом контур может быть неподвижен, а меняется магнитное поле.

Таким образом, э. д. с. индукции равна взятой с обратным знаком скорости изменения магнитного потока через поверхность, ограниченную замкнутым контуром или заметаемую проводником в процессе движения (закон Фарадея). Знак «минус» в формуле (17.2) отражает уже упоминавшееся выше правило Ленца: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.

Если контур содержит не один, а N витков, то в формулу (17.2) вместо магнитного потока М через один виток следует подставлять выражение   NМ; параметр  называется потокосцеплением и также измеряется в веберах.

Явление электромагнитной индукции лежит в основе работы генераторов электрического тока. В таких устройствах для получения электрической энергии проволочную рамку (точнее – систему рамок), находящуюся в магнитном поле, приводят во вращение с помощью потоков воды или пара, двигателей внутреннего сгорания или просто усилиями собственных мускулов.

В заключение заметим, что индукционные токи, которые возникают при изменении магнитного потока, могут течь не только в проволочных контурах, но и в объёме массивных проводников, заметно нагревая их. Эти токи называются токами Фуко; данное явление используется, например, для плавки металлов.