Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика, часть I. Конспект лекций.doc
Скачиваний:
188
Добавлен:
07.11.2018
Размер:
4.76 Mб
Скачать

6.1.4 Следствия из преобразований Лоренца

Из преобразований Лоренца вытекает ряд следствий, которые допускают экспериментальную проверку и, тем самым, могут свидетельствовать о том, насколько теория Эйнштейна соответствует действительности.

а) Сокращение длины движущихся объектов

Пусть объект, имеющий длину l0 в системе отсчёта XYZ, (рис. 6.4) движется вместе с этой системой со скоростью 0 относительно системы XYZ вдоль оси X. Очевидно при этом, что l0x2  x1. Но длину объекта l можно измерить и в системе XYZ. Для этого в один и тот же момент времени t следует засечь координаты начала и конца объекта: lx2x1. Используя обратное преобразование Лоренца для координаты x (именно в него входит нужное время t), получим:

l0x2  x1  , или

ll0. (6.8)

Поскольку  1, ll0, то есть, объект как бы «сокращается» в размерах относительно неподвижного наблюдателя вдоль направления своего движения1. Изменения размеров в двух других направлениях при этом не происходит.

б) Изменение длительности процесса

Пусть в одной и той же точке с координатой x в движущейся системе отсчёта произошли два события, разделённые интервалом времени 0t2  t1. С точки зрения наблюдателя, находящегося в системе отсчёта XYZ этот интервал составляет   t2t1. Используя обратное преобразование Лоренца для координаты x (именно в него входит нужное время t), получим:

  t2t1, или

  . (6.9)

Поскольку  1,   0, то есть из формулы (6.9) следует, что длительность какого-либо события, происходящего с телом, минимальна в той системе отсчёта, в которой тело покоится. Чем быстрее тело движется, тем дольше длится это событие с точки зрения наблюдателя, мимо которого пролетает тело.

Последнее соотношение получило непосредственное экспериментальное подтверждение. Под действием солнечного излучения в верхних слоях атмосферы Земли рождаются элементарные частицы мюоны. Эти частицы нестабильны, они распадаются самопроизвольно на электрон (или позитрон) и два нейтрино. Среднее время жизни, измеренное в условиях, когда они неподвижны (или движутся с малой скоростью), составляет всего лишь 2·106 с. На первый взгляд, даже двигаясь со скоростью света, мюоны за это время способны пролететь не более 600 м. Однако, как показывают наблюдения, мюоны, хотя и образуются на высоте 20  30 км, всё же успевают в значительном количестве достигнуть земной поверхности. Это объясняется тем, что 2·106 с – собственное время жизни мюона, то есть время 0, измеренное по часам, движущимся вместе с ним. Время , отсчитанное по часам экспериментатора, связанного с Землей, оказывается гораздо большим (скорость мюона близка к с). Поэтому нет ничего удивительного в том, что этот экспериментатор наблюдает пробег мюона, значительно больший 600 м.

Отметим, что с позиции самого мюона, хотя его время существования и невелико, малым для него оказывается расстояние, пролетаемое до поверхности Земли (имеет место лоренцево сокращение длины).

С замедлением течения времени в движущейся системой отсчёта связан так называемый парадокс близнецов. Поскольку об этом парадоксе довольно часто вспоминается в научно-популярной и фантастической литературе, имеет смысл рассмотреть его подробнее. Напомним, что парадокс – это неожиданное положение, находящееся в видимом противоречии с общепринятыми понятиями.

Представим себе, что на Земле одновременно родились два брата – близнеца, один из которых в зрелом возрасте стал космонавтом и собрался полететь в межзвёздную экспедицию. До старта ракеты биологический возраст близнецов был одинаковым, поскольку оба всю жизнь провели на Земле и двигались со скоростями, много меньшими с. После старта космонавт будет двигаться с большой скоростью, а, следовательно, с точки зрения близнеца, оставшегося на Земле, его старение будет происходить медленнее. Это еще не парадокс, а простое следствие преобразований Лоренца.

Теперь сделаем еще один шаг в размышлениях: с точки зрения космонавта неподвижной можно было бы считать ракету, это Земля улетала из-под ног, и, следовательно, это землянин должен будет стариться медленнее! Итак, казалось бы, всё зависит от точки зрения, разницы – никакой. Однако, несмотря на кажущуюся равноценность систем отсчёта «ракета» и «Земля», после возвращения домой окажется, что всё же именно космонавт состарится меньше брата. Вот в этом и заключается видимое противоречие, парадокс.

Данный парадокс возник из-за того, что мы посчитали обе системы отсчёта равноценными. Но это не так: разгоняясь до околосветовой скорости, затормаживая у звезды, разворачиваясь, вновь разгоняясь по направлению к Земле, а затем – затормаживая для посадки, ракета оказывается неинерциальной, движущейся с ускорением системой отсчёта. Неинерциальность (это можно строго показать, используя математический аппарат СТО), как раз и приводит к тому, что общее время между стартом и возвращением ракеты для космонавта всё же окажется меньше, чем для земного наблюдателя.

Подобные эксперименты уже проводились в наше время: сравнивались показания часов, остававшихся на Земле, и запускавшихся в космос на спутниках. И хотя скорости современных космических аппаратов далеки от световых, различие в показаниях часов в земной лаборатории и возвращаемых на Землю после достаточно длительного полёта фиксируется вполне уверенно.

Некоторые примеры

  • Учитывая, что среднее расстояние от Земли до Солнца составляет 150000000 км (это расстояние называется 1 а. е. – астрономическая единица), можно оценить время, за которое свет, испущенный нашим светилом, достигает земной поверхности: около 500 с или 8,3 мин.

  • До самой близкой к Солнцу соседней звезды (Альфа Центавра) свет идёт примерно 4,4 года. Если полететь к этой звезде на космическом корабле, движущемся со скоростью 0,99с, то для космонавта полёт туда и обратно займёт примерно 9 лет. На Земле при этом пройдёт более 60 лет…

  • По современным представлениям средний диаметр Вселенной составляет около 156 млрд. световых лет.

  • Даже у аппарата, движущегося с третьей космической скоростью (16,6 км/с), лоренцево сокращение длины не превышает 1,5109%.

Вопросы для повторения

  1. Сформулируйте постулаты Эйнштейна в СТО. Чем формулировка первого постулата отличается от формулировки принципа относительности Галилея?

  2. Приведите пример ситуации, которая говорит о том, что время в системах отсчёта, движущихся относительно друг друга, течёт неодинаково.

  3. Каков смысл преобразований Галилея и Лоренца (что с их помощью можно определить)?

  4. Приведите пример применения правила сложения скоростей в СТО.

  5. Какие следствия вытекают из преобразований Лоренца?

  6. Приведите пример эксперимента, для объяснения результатов которого необходимо привлекать преобразования Лоренца.

  7. В чём заключается парадокс близнецов?

Оцените время, которое пройдёт на Земле за время космической экспедиции к Сириусу (до него примерно 8,6 световых лет пути) со средней скоростью 0,99 от скорости света.