Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика, часть I. Конспект лекций.doc
Скачиваний:
188
Добавлен:
07.11.2018
Размер:
4.76 Mб
Скачать

15.2 Магнитое поле в веществе

15.2.1 Гипотеза Ампера. Гиромагнитное отношение

По характеру воздействия магнитного поля на различные материалы все их можно разделить на несколько групп, среди которых большую часть составляют парамагнетики, диамагнетики и ферромагнетики1. Парамагнетики и диамагнетики очень слабо взаимодействуют с магнитным полем, причём парамагнетики втягиваются в область сильного поля, а диамагнетики, наоборот, выталкиваются из него. На ферромагнетики магнитное поле оказывает сильное влияние, изготовленные из таких материалов объекты притягиваются магнитами и сами могут становиться таковыми.

Д ля объяснения природы магнитных свойств вещества Ампер выдвинул гипотезу, согласно которой любой материал можно представить в виде совокупности невидимых глазу из-за своих малых размеров кольцевых микротоков. В ненамагниченном состоянии все микротоки (и их магнитные моменты) ориентированы хаотически, а поскольку совпадает по направлению с вектором индукции магнитного поля, создаваемого самим витком на его оси, магнитное поле внутри образца отсутствует вовсе (рис. 15.4.а). При внесении образца в магнитное поле микротоки начинают поворачиваться (рис. 15.4.б), и хотя тепловое движение и взаимодействие токов друг с другом мешают развороту, тем не менее, с увеличением индукции внешнего магнитного поля упорядоченная ориентация микротоков становится всё более явно выраженной (рис. 15.4.в). Общее магнитное поле в веществе является теперь суперпозицией внешнего поля и суммарного поля всех микротоков, что и накладывает свой отпечаток на поведение в магнитном поле всего образца в целом.

Используя данную гипотезу, можно объяснить явление парамагнетизма, однако сама она не может дать ответ основной на вопрос: что это такое – микротоки, какова их физическая природа? Во времена Ампера о строении вещества люди имели ещё весьма смутное представление, но сейчас даже школьник знаком с полуклассической теорией Бора строения атома, и способен предположить, что микротоки можно считать результатом движения по орбитам вокруг ядра электронов, которые входят в состав атома. Каждый электрон, движущийся по своей орбите – это микроток, и если таких электронов не один (как у водорода) а больше, то, сложив векторно магнитные моменты, соответствующие их орбитальному движению, получаем некоторый усреднённый магнитный момент атома в целом.

Воспользовавшись этим представлением, покажем, как должен быть связан магнитный момент электрона, движущегося вокруг ядра по круговой орбите, с его моментом импульса – параметром, характеризующим вращательное движение электрона (см. рис. 15.5).

Напомним: моментом импульса L материальной точки (а электрон можно считать такой точкой) относительно некоторой оси (в нашем случае – оси вращения) называется выражение вида  [], причём

Lrprm,

где r – расстояние до оси (у нас – радиус орбиты), p – импульс точки (pm, где m – масса электрона, – его линейная скорость). Направление вектора согласовано с вектором скорости по правилу винта (на рисунке 15.5 вектор направлен вверх).

В свою очередь, интерпретируя движение электрона, как протекание электрического тока (его направление противоположно направлению вращения электрона, частицы, имеющей отрицательный заряд), можно рассчитать магнитный момент получающегося «витка» – круговой орбиты, по которой движется заряд e, совершая один оборот за время T (соответствующий ток I):

pmISr2.

Так как направление вектора согласовано с направлением протекания тока по правилу винта, то на рисунке этот вектор направлен вниз.

Учтём теперь, что  2r/T. Тогда   r2, или

  . (15.3)

Формула (15.3) носит название орбитального гиромагнитного отношения; знак «минус» в ней говорит о том, что вектор момента импульса и вектор магнитного момента электрона при орбитальном движении направлены в противоположные стороны (то есть проекции этих векторов на любую выделенную ось должны иметь разные знаки).

В справедливости соотношения для парамагнитных и диамагнитных материалов можно убедиться на практике; об одном из экспериментов (опыте Штерна - Герлаха) будет рассказано позднее в разделе «Квантовая механика». В случае ферромагнетиков данное отношение (обозначим его pms/Ls) не связано с орбитальным движением, и к тому же оно оказывается в два раза больше:

  . (15.4)