Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика, часть I. Конспект лекций.doc
Скачиваний:
239
Добавлен:
07.11.2018
Размер:
4.76 Mб
Скачать

2.2.2 Второй закон Ньютона

Как правило, любое тело одновременно испытывает воздействие со стороны многих объектов, то есть на него действует не одна, а несколько сил. Согласно второму закону Ньютона сумма всех сил, действующих на тело, равна скорости изменения его импульса:

. (2.2)

Заметим, что сила – вектор, и суммирование в этой формуле должно производиться по правилам сложения векторов (по правилу параллелограмма или же по отдельности для каждой из проекций сил).

Формулировка закона ещё раз напоминает нам, что скоростью изменения какой-либо функции (в нашем случае – импульса) называется первая производная этой функции по времени.

Проанализируем выражение (2.2).

Сумму всех сил, действующих на тело, заменим одной результирующей силой:

.

Воспользовавшись определением импульса, распишем, чему равна скорость его изменения:

.

По определению ускорения – см. формулу (1.2):

, то есть .

Если масса тела не меняется в процессе его движения (m const, или  0), то формула (2.2) приобретает вид, хорошо известный из школьного курса физики:

. (2.3)

Таким образом, известное выражение (2.3) справедливо лишь для случая, когда масса тела, движущегося под действием некоторой постоянной силы , не меняется со временем.

Давайте ответим на вопрос, меняется ли в процессе движения

  • масса грузовика? (Да? Нет?)

  • масса самолёта? (Да? Нет?)

  • масса стартующей ракеты? (Да? Нет?)

В последнем случае очевиден ответ – «Да», поскольку при взлете ракеты сжигаются десятки тонн горючего (да и ставшие пустыми баки разгонных ступеней сбрасываются). Но горючее сжигается и при полёте самолёта, и при движении грузовика! Просто соответствующим изменением массы мы зачастую пренебрегаем по сравнению с массой самого движущегося объекта: именно поэтому при решении школьных задач из раздела «динамика» мы привыкли использовать формулу второго закона Ньютона не в виде (2.2), а в виде (2.3).

Существует ещё одно важное соображение, которое необходимо иметь в виду, когда мы говорим, что именно формула (2.2), а не (2.3) является основной для второго закона.

Дело в том, что импульс тела с увеличением его скорости возрастает не прямо пропорционально . Более общая по сравнению с классической механикой теория – специальная теория относительности – говорит о том, что на самом деле импульс тела связан с его скоростью соотношением

, (2.4)

где m0 – масса покоящегося тела (масса покоя); с – скорость света в вакууме.

Дробь в формуле (3.5) часто интерпретируется, как масса m тела, движущегося со скоростью :

, (2.5)

Сказанное означает, что по мере разгона тела его масса увеличивается. Особенно заметным это оказывается при достижении скоростей, близких к скорости света: при  с (что как раз и имеет место в классической механике) подкоренное выражение в формулах (2.4) и (2.5) практически равно единице, и m m0. Однако, если всё же учесть возможность разгона тела до больших скоростей, то понятно, что формула второго закона Ньютона в виде (2.3) при этом перестанет работать, в то время как выражение (2.2) с учётом формулы (2.4) для импульса будет по-прежнему оставаться справедливым.

Для современных науки и техники процессы, в которых подтверждается справедливость релятивистских (от английского relatiityотносительность) соотношений (2.4) и (2.5), стали уже вполне обыденными, не вызывает сомнений и корректность приведённой выше формулировки второго закона Ньютона. Тем удивительнее то, что Ньютон, живший за две с лишним сотни лет до создания СТО, сформулировал свой второй закон именно в виде (2.2) общем, справедливом даже в релятивистской физике, а не в упрощённом (2.3), который применим только в физике классической (и то лишь, если m const).

В заключение заметим, что формулы (2.2) и (2.3) позволяют определить единицу измерения силы. В СИ сила измеряется в ньютонах; 1 Н 1 кгм/с2.