
- •Часть I
- •Часть I
- •Часть I конспект лекций
- •127994 Москва, а-55, ул. Образцова д. 9, стр.9. Типография миит
- •Лекция 1 механика. Часть I
- •1.1 Кинематика
- •1.1.1 Основные понятия
- •1.1.2 Равномерное движение по прямой
- •1.1.3 Равнопеременное движение по прямой
- •1.1.4 Движение вдоль прямой с переменным ускорением
- •1.1.5 Движение тела, брошенного под углом к горизонту
- •1.1.6 Движение точки по окружности
- •Лекция 2 механика. Часть II
- •2.1 Масса и импульс тела
- •2.1.1 Масса
- •2.1.2 Импульс
- •2.2 Динамика. Законы ньютона
- •2.2.1 Понятие силы. Инерциальные системы отсчёта. Первый закон Ньютона
- •2.2.2 Второй закон Ньютона
- •2.2.3 Третий закон Ньютона. Вес тела
- •2.2.4 Закон Всемирного тяготения
- •2.2.5 Примеры сил. Рекомендации к решению стандартных
- •Лекция 3 механика. Часть III
- •3.1 Динамика вращательного движения
- •3.1.1 Центр масс системы материальных точек.
- •3.1.2 Момент инерции. Теорема Штейнера
- •3.1.3 Момент импульса
- •3.1.4 Момент силы
- •3.1.5 Основной закон динамики вращательного движения
- •Лекция 4 механика. Часть IV
- •4.1 Прецессия гироскопа
- •4.2 Работа и энергия
- •4.2.1 Работа силы. Мощность
- •4.2.2 Кинетическая энергия
- •4.2.3 Первая и вторая космические скорости
- •4.2.4 Потенциальная энергия (определения)
- •Лекция 5 механика. Часть V
- •5.1 Работа и энергия (окончание)
- •5.1.1 Потенциальная энергия
- •5.2 Законы сохранения
- •5.2.1 Закон сохранения импульса
- •5.2.2 Закон сохранения момента импульса. Трёхстепенной гироскоп
- •5.2.3 Закон сохранения механической энергии
- •5.2.4 О законах сохранения в природе. Принцип симметрии
- •Лекция 6 механика. Часть VI
- •6.1 Основы специальной теории относительности (сто)
- •6.1.1 Принцип относительности Галилея.
- •6.1.3 Преобразования Лоренца
- •6.1.4 Следствия из преобразований Лоренца
- •Лекция 7 механика. Часть VII.
- •7.1 Основы релятивистской динамики
- •7.1.2 Энергия тела в сто.
- •7.1.3 Связь энергии и импульса тела.
- •7.2 Электростатика. Часть I
- •7.2.1 Закон сохранения электрического заряда и закон Кулона – основополагающие законы электростатики
- •7.2.2 Напряженность электрического поля.
- •Лекция 8 электростатика. Часть II
- •8.1 Характеристики электричесокого поля
- •8.1.1 Работа по переносу заряда в электрическом поле
- •8.1.2 Потенциал – энергетическая характеристика
- •8.1.3 Связь потенциала и напряжённости электрического поля
- •8.1.4 Теорема Гаусса для электрического поля в вакууме
- •8.1.5 Примеры применения теоремы Гаусса для электрического поля в вакууме
- •Лекция 9 электростатика. Часть III
- •9.1 Характеристики электричесокого поля
- •9.1.1 Примеры применения теоремы Гаусса для электрического поля в вакууме (продолжение)
- •9.1.2 Электрический диполь. Диполь в однородном и неоднородном электрических полях
- •9.2 Диэлектрики в электрическом поле
- •9.2.2 О пьезоэффекте и сегнетоэлектричестве
- •Лекция 10 электростатика. Часть IV
- •10.1 Диэлектрики в электрическом поле (Часть 2)
- •10.1.1 Теорема Гаусса для электрического поля в диэлектрике
- •10.2 Металлы в электрическом поле
- •10.2.1 Напряжённость и потенциал электрического поля
- •10.2.2 Электроёмкость уединённого проводника
- •10.2.3 Энергия уединённого заряженного проводника
- •10.2.4 Электрические конденсаторы. Электроёмкость
- •Лекция 11 постоянный электрический ток. Часть I
- •11.1 Металлы в электрическом поле (Часть II)
- •11.1.1 Энергия заряженного конденсатора.
- •11.2 Электрический ток в металлах
- •11.2.1 Классическая теория электропроводности. Определения: сила тока, плотность тока
- •11.2.2 Закон Ома в дифференциальной форме
- •11.2.3 Закон Ома для однородного участка цепи. Электрическое сопротивление
- •11.2.4 Электродвижущая сила. Закон Ома для неоднородного участка цепи. Закон Ома для замкнутой цепи
- •Лекция 12 постоянный электрический ток. Часть II
- •12.1 Электрический ток в металлах (продолжение)
- •12.1.1 Соединение элементов цепи постоянного тока. Правила Кирхгофа
- •12.1.2 Закон Джоуля-Ленца
- •12.1.3 Достоинства и недостатки классической теории
- •12.2 Электрический ток в вакууме, в жидкостях
- •12.2.1 Явление термоэлектронной эмиссии. Вакуумный диод
- •12.2.2 Электрический ток в жидкостях. Явление электролиза
- •12.2.3 Электрический ток в газах
- •Лекция 13 магнитное поле. Часть I
- •13.1 Индукция магнитного поля
- •13.1.1 Магнитное поле. Силовые линии. Сила Ампера.
- •13.1.2 Взаимодействие параллельных токов.
- •13.1.3 Закон Био-Савара-Лапласа
- •Лекция 14 магнитное поле. Часть II
- •14.1 Индукция магнитного поля (Часть II)
- •14.1.1 Действие магнитного поля на движущийся заряд.
- •14.1.2 Эффект Холла. Использование эффекта Холла
- •14.1.3 Теорема о циркуляции вектора . Примеры применения теоремы
- •14.1.4 Теорема Гаусса для магнитного поля
- •Лекция 15 магнитное поле. Часть III
- •15 Индукция магнитного поля (Часть III)
- •15.1.1 Работа по перемещению проводника с током
- •15.1.2 Магнитный момент витка с током.
- •15.2 Магнитое поле в веществе
- •15.2.1 Гипотеза Ампера. Гиромагнитное отношение
- •15.2.2 Намагниченность . Теорема о циркуляции вектора
- •IdN2 InSdlcos nisdlcos npmdlcos Jdlcos ().
- •15.2.3 Связь векторов , и . Виды магнетиков.
- •15.2.4 Некоторые примеры
- •15.2.5 Вопросы для повторения
- •Лекция 16 магнитное поле. Часть IV
- •16.1 Магнитое поле в веществе
- •16.1.1 Парамагнетизм
- •16.1.2 Прецессия электронных орбит в атоме. Диамагнетизм
- •16.1.3 Ферромагнетизм. Петля гистерезиса
- •Лекция 17 электромагнитное поле
- •17.1 Электромагнетизм
- •17.1.1 Явление электромагнитной индукции
- •17.1.2 Явление самоиндукции
- •17.1.3 Явление взаимной индукции
- •17.1.4 Энергия магнитного поля
- •17.1.5 Система уравнений Максвелла
8.1.5 Примеры применения теоремы Гаусса для электрического поля в вакууме
а) Поле равномерно заряженной сферы
Рассмотрим сферу радиусом R и зарядом Q. Она делит пространство на две область: внутри сферы (где зарядов нет) и снаружи от неё. Выражение для напряжённости создаваемого электрического поля получим для каждой из этих областей.
Д
ля
области вне
сферы: рисуем
чертёж, изображаем силовые линии,
выбираем точку М,
находящуюся на расстоянии r
от центра
сферы, проводим через неё одну из силовых
линий, после чего
выбираем замкнутую поверхность,
соответствующую симметрии задачи и
проходящую через эту точку. Очевидно,
такой поверхностью будет сфера, центр
которой совпадает с центром сферы,
напряжённость электрического поля
которой мы рассчитываем (рис. 8.4.а).
Теперь
считаем поток вектора
через выбранную поверхность, учитывая,
что нормаль к её любому участку, например,
– с точкой M,
совпадает с силовой линией, проходящей
через этот участок (угол ,
который входит в формулу для потока,
везде равен нулю):
E
В силу симметрии выбранной поверхности напряжённость электрического поля в любой её точке должна быть одинаковой:
E
.
Но
по определению интеграла
S,
где S
4r2
– площадь сферы; таким образом, E
4r2E.
Применим
теорему Гаусса: выбранной поверхностью
охватывается весь заряд Q,
поэтому можно записать: 4r2E
,
или, другими словами, напряженность
поля вне заряженной сферы
E
.
(8.10)
Для
любой точки М
в области,
находящейся внутри
заряженной сферы,
можно выбрать сколь угодно много
замкнутых поверхностей, проходящих
через эту точку и при этом лежащих внутри
заряженной сферы (рис. 8.4.б).
По теореме Гаусса, так как ни одна из
таких поверхностей не окружает заряд,
то для них для всех E
0, независимо от формы. Другими словами,
в этом случае
0 при любом S,
а это возможно лишь если интеграл берётся
от нуля, то есть внутри
заряженной сферы
E
0.
Некоторые примеры
-
В физике, как правило, потенциал электрического поля равным нулю выбирается на бесконечности; в электротехнике за нулевой потенциал часто принимают поверхность Земли.
-
У живых клеток в покое между внутренним содержимым клетки и наружным раствором существует разность потенциалов порядка 60 – 90 мВ.
-
Разность потенциалов между катодом и анодом внутри электронно-лучевой трубки цветного телевизора достигает 25 кВ.
-
Разность потенциалов между Землёй и ионосферой составляет 200 – 250 кВ.
Вопросы для повторения
-
Что называется потенциалом электрического поля? В каких единицах она измеряется в СИ? Как отображается графически?
-
Выведите формулу для потенциала электрического поля, создаваемого точечным зарядом.
-
В чём заключается принцип суперпозиции в случае потенциала электрического поля? Ответ поясните рисунком.
-
Запишите формулы, связывающие напряжённость и потенциал электрического поля и поясните смысл входящих в эти формулы величин.
-
Изобразите картины эквипотенциальных линий электростатических полей, создаваемых уединёнными точечными зарядами, близко расположенными разноимёнными зарядами, обкладками плоского электрического конденсатора.
-
Сформулируйте теорему Гаусса для электрического поля; запишите соответствующую формулу и поясните смысл входящих в формулу величин.
-
Продемонстрируйте, как применяется теорема Гаусса для вычисления напряженности электрического поля, создаваемого равномерно заряженной сферой.