Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика, часть I. Конспект лекций.doc
Скачиваний:
236
Добавлен:
07.11.2018
Размер:
4.76 Mб
Скачать

7.2.2 Напряженность электрического поля.

Графическое отображение электрических полей

Напомним: если на тело в каждой точке пространства действует определённая сила, то говорят, что тело находится в поле сил. Если на заряженное тело со стороны других заряженных тел в каждой точке пространства действует сила Кулона, то можно говорить о поле таких сил, или об электрическом поле. По определению напряженностью электрического поля в заданной точке называется отношение силы , действующей на точечный заряд q0, помещённый в эту точку, к величине этого заряда:

. (7.11)

Направление вектора совпадает с направлением силы, действующей на положительный точечный заряд q0; в СИ напряжённость электрического поля измеряется в вольтах на метр: []  1 Вм1; при этом 1 Вм1  1 НКл1. Вольт – единица измерения электрического потенциала; обоснованность подобного выбора единицы измерения напряжённости электрического поля мы подтвердим позднее.

Замечание

Приведённое выше определение даёт нам практический способ нахождения . Так, например, если нас интересует напряженность электрического поля в данной точке комнаты, необходимо поместить в эту точку положительный заряд заданной величины q0, измерить электрическую силу, которая на него будет действовать в этой точке (для этого можно использовать достаточно чувствительный динамометр), и, разделив F на q0, вычислить величину Е. Направление совпадает с направлением силы .

Задание:

Используя определение напряжённости электрического поля и формулу закона Кулона, убедитесь, что напряжённость электрического поля, создаваемого точечным зарядом q на некотором расстоянии r от него, рассчитывается по формуле

E . (7.12)

По такой же формуле рассчитывается напряжённость электрического поля, создаваемого заряженным шаром (или сферой) на расстоянии r от его центра при условии, что это расстояние больше радиуса шара (сферы).

Для напряжённости, так же, как и для силы, справедлив принцип суперпозиции: напряженность электрического поля , создаваемого в заданной точке системой заряженный тел, равна векторной сумме напряжённостей электрических полей, создаваемых в этой точке каждым телом в отдельности:

. (7.13)

П ример определения путём векторного суммирования напряжённостей полей трёх зарядов поясняется рисунком 7.2.

Таким образом, если хотя бы одно из взаимодействующих заряженных тел – не точечное, не равномерно заряженные шар или сфера, напрямую формулу закона Кулона использовать нельзя, нужно выражать силу , действующую на заряд q, через напряженность электрического поля , в котором заряд находится:

. (7.14)

Саму же напряжённость следует заранее рассчитать, пользуясь уже рассмотренным принципом суперпозиции, применяя теорему Гаусса (о ней речь пойдёт позднее) и просто (если это возможно) заранее измерить с помощью соответствующих приборов.

Электрическое поле можно отображать графически с помощью силовых линий. Силовой называется линия, касательная в каждой точке к которой совпадает по направлению с силой, действующей в электрическом поле на точечный положительный заряд, помещаемый в эту точку.

Силовые линии начинаются на положительных зарядах и заканчиваются на отрицательных (или уходят в бесконечность). Очевидно, силовые линии не должны пересекаться, поскольку, если бы хотя бы пара линий пересеклась в какой-то точке поля, то в этой точке можно было бы провести две касательные (по одной к каждой линии), а, значит, однозначно определить направление действия кулоновской силы на помещаемый туда заряд было бы нельзя.

Примеры картин силовых линий полей, создаваемых отдельными зарядами и системами зарядов, приведены на рис. 7.3 – 7.5.

П ринцип построения силовой линии поясняется рисунком 7.5. Пробный точечный заряд q0 помещаем в некоторую точку поля, по принципу суперпозиции находим величину и направление результирующего вектора в этой точке. Затем отпускаем заряд q0 и даём ему возможность немного сместиться под действием сил поля. В новой точке фиксируем заряд, опять определяем величину и направление вектора напряжённости, вновь отпускаем заряд, позволив ему сдвинуться дальше, затем ещё раз останавливаем и ищем напряженность поля, и т. д. Определив направления векторов напряжённости на пути перемещения пробного заряда от q1 до q2, строим линию, к которой все эти вектора были бы касательными.

Это и будет искомая силовая линия (на рисунке изображены лишь три последовательных положения заряда q0 и три соответствующих вектора напряжённости: , и ).

Некоторые примеры

  • Один из проектов создания электронных пушек для уничтожения военных космических аппаратов подразумевает стрельбу по движущейся мишени пучком ускоренных электронов. После прохождения разности потенциалов в 10 МВ (или 107 В) скорость электронов возрастает почти до 0,98c, что позволяет поражать цели на орбите вокруг Земли практически мгновенно.

  • При столкновении протона и антипротона происходит их аннигиляция: они исчезают, но при этом рождаются два кванта электромагнитного излучения, суммарная энергия которых равна примерно 31010 Дж. При аннигиляции молекулы обычной воды и молекулы воды из антивещества энергии выделяется уже в 18 раз больше. Это означает, что при попадании в атмосферу земли метеорита из «антильда» массой всего в 1 г при его аннигиляции выделится энергия примерно 1,81013 Дж: в три с лишним раза больше, чем выделилось энергии при взрыве четырёхтонной атомной бомбы в Хиросиме.

  • Средняя напряжённость электростатического поля нашей планеты (системы Земля – ионосфера) составляет примерно 100В/м.

  • Оценка и нормирование электростатических полей на рабочих местах осуществляется в зависимости от времени воздействия поля на работника. Так, при напряженности электрического поля менее 20кВ/м время пребывания на рабочем месте не регламентируется, но уже в электростатических полях с напряженностью более 60 кВ/м нахождение персонала без специальных средств защиты не допускается вообще.

Вопросы для повторения

  1. Выполняются ли законы Ньютона в рамках СТО?

  2. Как рассчитывается кинетическая энергия в СТО?

  3. Продемонстрируйте, что при малых скоростях объекта релятивистская формула для его кинетической энергии переходит в выражение, известное из классической механики.

  4. Что имеется в виду, когда говорят, что некоторый параметр является инвариантом к преобразованиям Лоренца? Приведите примеры таких параметров.

  5. Продемонстрируйте, что пространственно-временной интервал действительно является инвариантом к преобразованиям Лоренца.

  6. Сформулируйте закон сохранения электрического заряда.

  7. Сформулируйте закон Кулона; ответ поясните рисунком.

  8. Что называется напряжённостью электрического поля? В каких единицах она измеряется в СИ? Как отображается графически?

  9. В чём заключается принцип суперпозиции в случае напряженности электрического поля? Ответ поясните рисунком.

  10. Изобразите картины силовых линий электростатических полей, создаваемых уединёнными точечными зарядами, близко расположенными разноимёнными и одноимёнными электрическими зарядами, обкладками плоского электрического конденсатора.