
- •Часть I
- •Часть I
- •Часть I конспект лекций
- •127994 Москва, а-55, ул. Образцова д. 9, стр.9. Типография миит
- •Лекция 1 механика. Часть I
- •1.1 Кинематика
- •1.1.1 Основные понятия
- •1.1.2 Равномерное движение по прямой
- •1.1.3 Равнопеременное движение по прямой
- •1.1.4 Движение вдоль прямой с переменным ускорением
- •1.1.5 Движение тела, брошенного под углом к горизонту
- •1.1.6 Движение точки по окружности
- •Лекция 2 механика. Часть II
- •2.1 Масса и импульс тела
- •2.1.1 Масса
- •2.1.2 Импульс
- •2.2 Динамика. Законы ньютона
- •2.2.1 Понятие силы. Инерциальные системы отсчёта. Первый закон Ньютона
- •2.2.2 Второй закон Ньютона
- •2.2.3 Третий закон Ньютона. Вес тела
- •2.2.4 Закон Всемирного тяготения
- •2.2.5 Примеры сил. Рекомендации к решению стандартных
- •Лекция 3 механика. Часть III
- •3.1 Динамика вращательного движения
- •3.1.1 Центр масс системы материальных точек.
- •3.1.2 Момент инерции. Теорема Штейнера
- •3.1.3 Момент импульса
- •3.1.4 Момент силы
- •3.1.5 Основной закон динамики вращательного движения
- •Лекция 4 механика. Часть IV
- •4.1 Прецессия гироскопа
- •4.2 Работа и энергия
- •4.2.1 Работа силы. Мощность
- •4.2.2 Кинетическая энергия
- •4.2.3 Первая и вторая космические скорости
- •4.2.4 Потенциальная энергия (определения)
- •Лекция 5 механика. Часть V
- •5.1 Работа и энергия (окончание)
- •5.1.1 Потенциальная энергия
- •5.2 Законы сохранения
- •5.2.1 Закон сохранения импульса
- •5.2.2 Закон сохранения момента импульса. Трёхстепенной гироскоп
- •5.2.3 Закон сохранения механической энергии
- •5.2.4 О законах сохранения в природе. Принцип симметрии
- •Лекция 6 механика. Часть VI
- •6.1 Основы специальной теории относительности (сто)
- •6.1.1 Принцип относительности Галилея.
- •6.1.3 Преобразования Лоренца
- •6.1.4 Следствия из преобразований Лоренца
- •Лекция 7 механика. Часть VII.
- •7.1 Основы релятивистской динамики
- •7.1.2 Энергия тела в сто.
- •7.1.3 Связь энергии и импульса тела.
- •7.2 Электростатика. Часть I
- •7.2.1 Закон сохранения электрического заряда и закон Кулона – основополагающие законы электростатики
- •7.2.2 Напряженность электрического поля.
- •Лекция 8 электростатика. Часть II
- •8.1 Характеристики электричесокого поля
- •8.1.1 Работа по переносу заряда в электрическом поле
- •8.1.2 Потенциал – энергетическая характеристика
- •8.1.3 Связь потенциала и напряжённости электрического поля
- •8.1.4 Теорема Гаусса для электрического поля в вакууме
- •8.1.5 Примеры применения теоремы Гаусса для электрического поля в вакууме
- •Лекция 9 электростатика. Часть III
- •9.1 Характеристики электричесокого поля
- •9.1.1 Примеры применения теоремы Гаусса для электрического поля в вакууме (продолжение)
- •9.1.2 Электрический диполь. Диполь в однородном и неоднородном электрических полях
- •9.2 Диэлектрики в электрическом поле
- •9.2.2 О пьезоэффекте и сегнетоэлектричестве
- •Лекция 10 электростатика. Часть IV
- •10.1 Диэлектрики в электрическом поле (Часть 2)
- •10.1.1 Теорема Гаусса для электрического поля в диэлектрике
- •10.2 Металлы в электрическом поле
- •10.2.1 Напряжённость и потенциал электрического поля
- •10.2.2 Электроёмкость уединённого проводника
- •10.2.3 Энергия уединённого заряженного проводника
- •10.2.4 Электрические конденсаторы. Электроёмкость
- •Лекция 11 постоянный электрический ток. Часть I
- •11.1 Металлы в электрическом поле (Часть II)
- •11.1.1 Энергия заряженного конденсатора.
- •11.2 Электрический ток в металлах
- •11.2.1 Классическая теория электропроводности. Определения: сила тока, плотность тока
- •11.2.2 Закон Ома в дифференциальной форме
- •11.2.3 Закон Ома для однородного участка цепи. Электрическое сопротивление
- •11.2.4 Электродвижущая сила. Закон Ома для неоднородного участка цепи. Закон Ома для замкнутой цепи
- •Лекция 12 постоянный электрический ток. Часть II
- •12.1 Электрический ток в металлах (продолжение)
- •12.1.1 Соединение элементов цепи постоянного тока. Правила Кирхгофа
- •12.1.2 Закон Джоуля-Ленца
- •12.1.3 Достоинства и недостатки классической теории
- •12.2 Электрический ток в вакууме, в жидкостях
- •12.2.1 Явление термоэлектронной эмиссии. Вакуумный диод
- •12.2.2 Электрический ток в жидкостях. Явление электролиза
- •12.2.3 Электрический ток в газах
- •Лекция 13 магнитное поле. Часть I
- •13.1 Индукция магнитного поля
- •13.1.1 Магнитное поле. Силовые линии. Сила Ампера.
- •13.1.2 Взаимодействие параллельных токов.
- •13.1.3 Закон Био-Савара-Лапласа
- •Лекция 14 магнитное поле. Часть II
- •14.1 Индукция магнитного поля (Часть II)
- •14.1.1 Действие магнитного поля на движущийся заряд.
- •14.1.2 Эффект Холла. Использование эффекта Холла
- •14.1.3 Теорема о циркуляции вектора . Примеры применения теоремы
- •14.1.4 Теорема Гаусса для магнитного поля
- •Лекция 15 магнитное поле. Часть III
- •15 Индукция магнитного поля (Часть III)
- •15.1.1 Работа по перемещению проводника с током
- •15.1.2 Магнитный момент витка с током.
- •15.2 Магнитое поле в веществе
- •15.2.1 Гипотеза Ампера. Гиромагнитное отношение
- •15.2.2 Намагниченность . Теорема о циркуляции вектора
- •IdN2 InSdlcos nisdlcos npmdlcos Jdlcos ().
- •15.2.3 Связь векторов , и . Виды магнетиков.
- •15.2.4 Некоторые примеры
- •15.2.5 Вопросы для повторения
- •Лекция 16 магнитное поле. Часть IV
- •16.1 Магнитое поле в веществе
- •16.1.1 Парамагнетизм
- •16.1.2 Прецессия электронных орбит в атоме. Диамагнетизм
- •16.1.3 Ферромагнетизм. Петля гистерезиса
- •Лекция 17 электромагнитное поле
- •17.1 Электромагнетизм
- •17.1.1 Явление электромагнитной индукции
- •17.1.2 Явление самоиндукции
- •17.1.3 Явление взаимной индукции
- •17.1.4 Энергия магнитного поля
- •17.1.5 Система уравнений Максвелла
Лекция 4 механика. Часть IV
4.1 ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ (пример)
4.1. Прецессия гироскопа
4.2 РАБОТА И ЭНЕРГИЯ
4.2.1 Работа силы. Мощность
4.2.2 Кинетическая энергия
4.2.3 Первая и вторая космические скорости
4.2.4 Потенциальная энергия (определения)
Некоторые примеры
Вопросы для повторения
4.1 ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ (пример)
4.1 Прецессия гироскопа
В качестве примера проявления основного закона динамики вращательного движения объясним явление прецессии гироскопа.
Гироскопом называется симметричный объект, вращающийся с большой скоростью относительно одной из своих осей симметрии. Если на такой объект действует сила, создающая момент который стремится повернуть ось вращения, возникает явление прецессии – ось вращения начинает описывать в пространстве конусообразную поверхность, ось симметрии которой совпадает с направлением действия силы. Примером прецессии является движение вращающегося волчка, ось которого выведена из вертикального положения; ещё один пример – прецессия электронных орбит в атоме, которую мы рассмотрим позднее при объяснении явления диамагнетизма.
На
рис. 4.1.а)
изображено положение вращающегося
волчка в некоторый момент времени. Ось
вращения ОО
наклонена относительно вертикали на
некоторый угол, волчок вращается так,
что вектор его угловой скорости (и,
соответственно, вектор момента импульса
)
в этот момент находятся в плоскости
рисунка.
На
гироскоп действуют две силы, приложенные
в разных точках: сила тяжести
и сила реакции опоры
.
Если бы гироскоп не вращался, он бы упал,
поворачиваясь в плоскости рисунка по
часовой стрелке относительно оси,
проходящей через точку О перпендикулярно
этой плоскости. Падение обусловлено
действием момента силы тяжести
относительно точки О (он направлен
вглубь рисунка); момент силы реакции
опоры
относительно этой точки равен нулю
(нулю равно расстояние от точки О до
точки приложения силы
).
Поэтому основной закон динамики
вращательного движения для гироскопа
можно записать в виде:
.
Из
данной формулы следует, что под действием
момента силы тяжести
у гироскопа за малое время dt
появляется добавка
к уже
имевшемуся моменту импульса
–
тоже малая и направленная перпендикулярно
ему (как и
,
–
вглубь плоскости рисунка). В результате
вектор
переходит в вектор
–
тот же, что и
по величине, но имеющий уже несколько
иное направление (см. рис. 4.1.б),
который является видом сверху схемы
расположения векторов
,
и
при прецессии). Это означает, что и ось
вращения гироскопа вместе с ним самим
теперь уже не лежит в плоскости рисунка!
Изменение
положения оси влечёт за собой изменение
направления действия момента силы
тяжести, который также «поворачивается»
(теперь это
).
Под его действием возникает новая
добавка к моменту импульса,
,
которая, в свою очередь меняет направление
вектора
на
,
ось гироскопа продолжает движение,
момент силы тяжести вновь меняет
направление и т. д. Как результат,
начинается прецессия –
движение оси вращения гироскопа по
конусообразной поверхности1
относительно вертикальной оси (рис.
4.1.а).
Примером прецессии является движение
оси вращения закрученного волчка (юлы),
в случае отклонения её от вертикали.