Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика, часть I. Конспект лекций.doc
Скачиваний:
236
Добавлен:
07.11.2018
Размер:
4.76 Mб
Скачать

Лекция 4 механика. Часть IV

4.1 ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ (пример)

4.1. Прецессия гироскопа

4.2 РАБОТА И ЭНЕРГИЯ

4.2.1 Работа силы. Мощность

4.2.2 Кинетическая энергия

4.2.3 Первая и вторая космические скорости

4.2.4 Потенциальная энергия (определения)

Некоторые примеры

Вопросы для повторения

4.1 ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ (пример)

4.1 Прецессия гироскопа

В качестве примера проявления основного закона динамики вращательного движения объясним явление прецессии гироскопа.

Гироскопом называется симметричный объект, вращающийся с большой скоростью относительно одной из своих осей симметрии. Если на такой объект действует сила, создающая момент который стремится повернуть ось вращения, возникает явление прецессииось вращения начинает описывать в пространстве конусообразную поверхность, ось симметрии которой совпадает с направлением действия силы. Примером прецессии является движение вращающегося волчка, ось которого выведена из вертикального положения; ещё один пример – прецессия электронных орбит в атоме, которую мы рассмотрим позднее при объяснении явления диамагнетизма.

На рис. 4.1.а) изображено положение вращающегося волчка в некоторый момент времени. Ось вращения ОО наклонена относительно вертикали на некоторый угол, волчок вращается так, что вектор его угловой скорости (и, соответственно, вектор момента импульса ) в этот момент находятся в плоскости рисунка.

На гироскоп действуют две силы, приложенные в разных точках: сила тяжести и сила реакции опоры . Если бы гироскоп не вращался, он бы упал, поворачиваясь в плоскости рисунка по часовой стрелке относительно оси, проходящей через точку О перпендикулярно этой плоскости. Падение обусловлено действием момента силы тяжести относительно точки О (он направлен вглубь рисунка); момент силы реакции опоры относительно этой точки равен нулю (нулю равно расстояние от точки О до точки приложения силы ). Поэтому основной закон динамики вращательного движения для гироскопа можно записать в виде:

.

Из данной формулы следует, что под действием момента силы тяжести у гироскопа за малое время dt появляется добавка к уже имевшемуся моменту импульса – тоже малая и направленная перпендикулярно ему (как и , – вглубь плоскости рисунка). В результате вектор переходит в вектор – тот же, что и по величине, но имеющий уже несколько иное направление (см. рис. 4.1.б), который является видом сверху схемы расположения векторов , и при прецессии). Это означает, что и ось вращения гироскопа вместе с ним самим теперь уже не лежит в плоскости рисунка!

Изменение положения оси влечёт за собой изменение направления действия момента силы тяжести, который также «поворачивается» (теперь это ). Под его действием возникает новая добавка к моменту импульса, , которая, в свою очередь меняет направление вектора на , ось гироскопа продолжает движение, момент силы тяжести вновь меняет направление и т. д. Как результат, начинается прецессия – движение оси вращения гироскопа по конусообразной поверхности1 относительно вертикальной оси (рис. 4.1.а). Примером прецессии является движение оси вращения закрученного волчка (юлы), в случае отклонения её от вертикали.