Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Общий курс лекци по патфизо.doc
Скачиваний:
3793
Добавлен:
28.02.2016
Размер:
2.16 Mб
Скачать

Сущность кальциевого повреждения клетки

В норме внутри клетки концентрация Са2+ (ионизированного) составляет 210-7 моль/л, а вне ее — приблизительно в 5 000 раз больше. Причем концентрация Са2+ в митохондриальном пуле клетки в 500 раз выше, чем в цитоплазме, что свидетельствует о существовании механизмов внутриклеточной регуляции его содержания.

Избыточная концентрация кальция в клетке может быть обусловлена двумя факторами: увеличением поступления и/или нарушением работы кальциевых насосов, выталкивающих его наружу. Увеличенный приток кальция в клетку может происходить как через поврежденную, так и через неповрежденную мембрану. Причем при обширном повреждении мембраны концентрация Са2+ внутри клетки быстро нарастает, что является характерным признаком погибающей клетки.

В случае относительно небольших мембранных повреждений возможно формирование особых каналов, ионофоров, через которые ионы кальция могут поступать внутрь клетки, спо­собствуя ее гибели.

Если целостность мембраны не нарушена, то кальций попадает в клетку через три вида каналов:

• хемочувствительные кальциевые каналы, которые могут быть открыты специальными фармакологическими препаратами;

• быстрые потенциал-зависимые кальциевые каналы, которые открываются лишь на короткий срок перезарядки мембраны;

• медленные потенциал-зависимые Са2+ -каналы, которые открыты постоянно за счет подпороговой деполяризации клеточной мембраны. В условиях гиперкальциемии, а также при нарушении внутриклеточных процессов при воспалении, гипоксии поступление избыточного количества кальция в клетку связано именно с этим видом каналов.

Причины нарушения удаления кальция из клетки

В основе этих нарушений лежит повреждение энергозависимых мембранных насосов:

1. Повреждение Са++ -насосов, связанное с отсутствием фермента Са++-зависимой АТФ-азы и/или недостатком АТФ. Причем, если речь идет об отсутствии фермента, то чаще всего это наблюдается при наследственной патологии.

Дефицит же АТФ в клетке может возникать при различных ситуациях: при гипоксии; при голодании; при нарушении активности ферментов цикла Кребса и дыхательной цепи; при разобщении процессов окислительного фосфорилирования; при нарушении транспорта АТФ из митохондрий креатинфосфатной транспортной системой и др.

2. Нарушения в работе Na-Ca-обменного механизма. Дело в том, что для нормальной функции кальциевых насосов клетки необходим определенный градиент концентраций ионов Na+ по обе стороны мембраны. Работа же Na-K-насоса, обеспечивающая этот градиент концентраций, требует большого количества энергии (молекул АТФ). Уменьшение количества АТФ в клетке, помимо изложенных выше причин, может быть связано с действием целого ряда веществ, например, таких, как тетрадотоксин, сердечные гликозиды и др.

3. Нарушение Са-аккумулирующей функции митохондрий. Это сопровождается ограничением транспорта Са++-цитоплазмы в митохондриальный пул, что приводит к нарастанию количества ионов Са++ в клетке. Чаще всего к этому приводят следующие причинные факторы:

• гиперфункция клетки, сопровождающаяся повышенным расходом АТФ;

• тканевая гипоксия;

• уменьшение внутриклеточного осмотического давления, действие солей тяжелых металлов. Все это дает картину неспецифического набухания митохондрий.

Избыток кальция в клетке вызывает следующие нарушения ее структуры и функции:

1. Нарушаются специализированные функции клетки, так как осуществление рабочих циклов (например, генерация потенциалов действия, сокращение) требует своевременно­го выведения Са из клетки. В противном случае клетка не способна ответить на очередной стимул; она будет находиться в рефракторном состоянии.

2. Происходит активирование мембранных фосфолипаз, в частности фосфолипазы-A2. Она отщепляет от фосфолипидов мембран повышенное количество ненасыщенных жирных кислот. Оставшиеся фосфолипиды, обладающие детергентными свойствами, формируют отрицательно-заряженную мицеллу, нарушающую целостность мембран.

3. Может наблюдаться разобщение процессов окислительного фосфорилирования.

4. Могут изменяться свойства важнейших белковых комплексов клетки, в состав которых входят ионы Са2+ (кальмодуллин, тропонин-С, кальцийсвязывающий белок энтероцитов, парвальбумин и др.).

5. Накопление во внутриклеточном пространстве ионов Са приводит к запиранию хлорных каналов, что существенно нарушает мембранный электрогенез.

Назовем патогенетические подходы к терапии кальциевых повреждений клеток:

1. Снижение поступления ионов кальция в клетку и как следствие — устранение нервных и гормональных влияний на клетку, что ведет к уменьшению числа Са-каналов. Чаще это достигается:

• блокадой различных рецепторов (например, назначением бета-адреноблокаторов при патологии миокарда, блокаторов Н2 гистаминовых рецепторов при бронхиальной астме);

• блокадой медленных потенциал-зависимых Са++-каналов специфическими блокаторами (верапамил, нифедипин, дилтиазем).

2. Усиление выведения Са из клетки. Это может быть достигнуто функциональной тренировкой клеток; улучшением оксигенации тканей (гипербарическая оксигенация, аортокоронарное шунтирование); обеспечением функционального покоя поврежденным клеткам.