Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FREGRAVOL2.pdf
Скачиваний:
71
Добавлен:
05.06.2015
Размер:
8.65 Mб
Скачать

Chapter 3

Rotating Black Holes and Thermodynamics

Tu vedresti ’l Zodiaco rubecchio

Ancora all’Orse piú stretto rotare

Se non uscisse fuor dal cammin vecchio.

Sí ch’ambo e due hann’un solo orizzon,

E diversi emisperi: . . .

Dante Alighieri (Purgatorio Canto IV, 64)

3.1 Introduction

In this chapter we study in considerable detail the quite intriguing and challenging properties of rotating black-holes encoded in the Kerr-Newman metric which contains only three parameters (m, J, q) corresponding, respectively, to the mass, to the angular momentum and to the charge of the hole. As anticipated in the previous chapter, irrespectively from all the details of its initial structure, a gravitational collapsing body sets down to a final equilibrium state described by the Kerr-Newman metric, which is the unique one, in D = 4, to be static, stationary, axial symmetric and asymptotically flat. The geodesic problem for this metric is still a completely integrable one, since there are enough first integrals, yet the explicit integration is very much laborious because it involves higher transcendental functions and the classification of trajectories turns out very complicated. We will derive the final integration formulae but we will present only a simple example of their application in view of such a complexity. We will instead dwell on the general new properties displayed by rotating black-holes that allow for a mechanism of energy extraction whose features have a surprising analogy with the laws of thermodynamics. Such an analogy is actually only the tip of an iceberg. The horizon area of the black holes behaves as an entropy and this makes it clear that, in a fundamental quantum theory of gravity, black holes must necessarily be endowed with a statistical interpretation in terms of some kind of microstates.

3.2 The Kerr-Newman Metric

Let us consider the standard set up of polar coordinates r, θ , φ for R3 plus the parameter t for time. For the angular variables θ , φ labeling the points of each 2-

P.G. Frè, Gravity, a Geometrical Course, DOI 10.1007/978-94-007-5443-0_3,

43

© Springer Science+Business Media Dordrecht 2013

 

44

3 Rotating Black Holes and Thermodynamics

Fig. 3.1 Our conventions for the angular coordinates on the S2 sphere are as follows: the azimuthal angle φ takes the values in the range [0, 2π ], while the ascension angle θ runs from 0 (the North Pole) to π (the South Pole). The metric ds2 = 2 + sin2 θ dφ2 is singular at θ = 0 and θ = π . These are coordinate singularities that can be removed by redefining θ

sphere of radius r we adopt the same conventions already utilized in establishing the Schwarzschild solution. For reader’s convenience we recall them here in Fig. 3.1.

Using this coordinate patch let us introduce a metric depending on three parameters m, α, q whose physical interpretation will be that of mass, angular momentum and electric/magnetic charge of the black hole, respectively.

It is convenient to introduce the following functions which will play the role of building blocks for the metric:

ρ(r, θ ) =

r2 + α2 cos2 θ

 

(3.2.1)

= r2 + α2 2mr + q2

(3.2.2)

In terms of these notations the Kerr-Newman metric is given by the following expression for the line-element:

dsKN2 = −

 

dt α sin2 θ dt 2 +

ρ2

dr2

 

ρ2

 

 

 

 

1

 

 

 

2

+ ρ2 2 +

 

sin2 θ r2 + α2 α dt

ρ2

≡ −gμν dxμ dxν = −KN2

 

(3.2.3)

Before studying the properties of such a metric it is useful to emphasize its notable limits in parameter space. They are listed below.

Minkowski If we set all parameters to zero m = α = q = 0 the Kerr-Newman metric (3.2.3) degenerates into the flat Minkowski metric:

dsKN2 dsMink2 = −dt2 + dr2 + r2 2 + sin2 2

(3.2.4)

Schwarzschild If we set α = q = 0, but we keep different from zero the mass parameter m = 0 the Kerr-Newman metric (3.2.3) degenerates into the spherical

3.2 The Kerr-Newman Metric

45

symmetric Schwarzschild metric. Indeed, under these assumptions we have:

 

ρ = r;

ρ2 = 1

2r

 

 

 

(3.2.5)

 

 

 

 

 

 

 

 

m

 

 

 

 

so that:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= − 1

2m

2 + 1

2m

 

1

dsKN2

dsSchw2

 

dt

 

 

dr2

r

r

 

 

+ r2 2 + sin2 2

 

 

 

(3.2.6)

Reissner-Nordström If we put α = 0 keeping both m and q non-vanishing we obtain the so-called Reissner-Nordström metric which is spherical symmetric but not Ricci-flat. As we shall discuss later on, this metric corresponds to an electrovac solution namely to a solution of the coupled system of Maxwell-Einstein equations. This solution describes the gravitational field generated by an electrically or magnetically charged monopole of mass m and charge q. If α = 0, we have

 

 

 

 

 

 

 

m

q2

 

 

 

 

 

 

ρ = r;

 

 

= 1

2

+ r2

 

 

 

 

(3.2.7)

 

ρ2

r

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2m

 

 

q2

 

 

2m

 

q2

 

1

dsKN2 dsRN2 = − 1

 

+

 

dt2 +

1

 

 

+

 

 

dr2

r

r2

 

r

r2

+ r2 2 + sin2 2

 

 

 

 

 

 

(3.2.8)

Kerr If we put the charge parameter to zero, namely q = 0, the Kerr-Newman metric degenerates into the Kerr metric which is Ricci-flat but not spherically symmetric. It is only axial-symmetric and it describes a rotating black-hole of mass

m and angular momentum J = . In this case we have

 

 

 

 

 

ρ =

r;

=

0 r2 + α2 2mr

 

 

(3.2.9)

and we find:

 

 

 

 

 

 

 

 

 

 

 

 

dsKN2 dsKerr2

 

0

dt α sin2 θ dt 2 +

ρ

2

 

dr2

 

 

= −

 

 

 

 

ρ2

 

0

 

 

 

 

+ ρ2 2

1

sin2 θ r2 + α2 α dt

2

 

 

+

 

(3.2.10)

 

ρ2

3.2.1 Riemann and Ricci Curvatures of the Kerr-Newman Metric

The next step in the analysis of the proposed metric (3.2.3) is the construction of the corresponding curvature forms. As usual we adopt the vielbein formalism and we

46 3 Rotating Black Holes and Thermodynamics

aim at the construction first of the spin connection ωab , secondly of the curvature 2-form Rab , from which we will extract the Riemann and Ricci tensors.

As written in (3.2.3) the Kerr-Newman metric is already presented as a sum of four squares so that singling out the vielbein 1-forms is an immediate task. Indeed

if we define:

 

 

 

 

 

 

 

 

 

V 0 =

 

 

dt α sin2 θ dφ ;

V 1 =

 

ρ

 

 

 

 

 

 

 

 

 

 

 

 

dr

 

ρ

 

(3.2.11)

 

 

 

 

V 2 = ρ dθ ;

V 3 =

 

sin θ

r2 + α2 α dt

 

 

ρ

we obtain:

 

 

 

 

 

 

 

 

 

KN2

≡ −dsKN2 = V a V bηab;

ηab = diag(+, , , )

(3.2.12)

Next we consider the construction of the torsionless spin-connection defined by:

dV a + ωab V cηbc = 0

The solution of (3.2.13) is the following one:

ω01

=

(2rq2 2mr2

+ 2 + 2 + (m r)α2 cos 2θ )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Δρ3

 

 

 

 

α2 cos θ sin θ

 

 

 

 

 

α

 

 

 

cos θ

 

 

 

 

 

 

 

 

 

 

 

 

 

ω02 =

 

 

 

 

 

 

V 0 +

 

 

 

 

 

 

 

V

3

 

 

 

ρ3

 

 

 

 

 

ρ3

 

 

ω03 =

αr sin θ

1

α

 

 

 

cos θ

V 2

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ3

 

 

 

 

 

ρ3

 

 

 

 

 

 

 

 

 

 

α2 cos θ sin θ

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω12 =

 

 

 

 

 

V 1 +

 

 

V 2

 

 

 

 

ρ3

 

 

ρ3

 

 

ω13 =

αr sin θ

0 +

r

 

V 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

ρ3

 

 

ρ3

 

 

 

 

 

ω23

=

α

 

 

sin θ cot θ V 0

+

(r2

+ α2) cot θ V 3

 

 

 

 

 

 

ρ3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ3

 

 

(3.2.13)

V0 + sin θ V 3

ρ3

(3.2.14)

Relying on the above result we can proceed to the calculation of the curvature 2- form, defined by:

Rab = ab + ωac ωdbηcd

(3.2.15)

and we obtain the following result:

3.2 The Kerr-Newman Metric

47

R01 =

1

4mr3 62r + q2 α2 6r2 + q2 6mr α2 cos 2θ V 0 V 1

 

2ρ6

 

 

2α cos θ 4rq2 + m α2 6r2 + 2 cos 2θ V 2 V 3

 

R02 =

1

α2 2r2 q2 + mr 2r2 3α2 + q2 3mr α2 cos 2θ V 0 V 2

2ρ6

 

 

α cos θ 4rq2 + m α2 6r2 + 2 cos 2θ V 1 V 3

 

R03

=

1

α2 2r2 q2 + mr 2r2 3α2 + q2 3mr α2 cos 2θ V 0 V 3

2ρ6

 

 

+ α cos θ 4rq2 + m α2 6r2 + 2 cos 2θ V 1 V 2

(3.2.16)

R12

=

1

α2 2r2 q2 + mr 2r2 3α2 + q2 3mr α2 cos 2θ V 1 V 2

 

2ρ6

 

 

α cos θ 4rq2 + m α2 6r2 + 2 cos 2θ V 0 V 3

 

R13

=

1

α cos θ 4rq2 + m α2 6r2 + 2 cos 2θ V 0 V 2

 

2ρ6

 

 

 

+ α2 2r2 q2 + mr 2r2 3α2 + q2 3mr α2 cos 2θ V 1 V 3

R23

=

1

2α cos θ 4rq2 + m α2 6r2 + 2 cos 2θ V 0 V 1

 

2ρ6

 

+ q2 2mr 2r2 3α2 3α2 cos 2θ V 2 V 3

Inspecting (3.2.16) we see that the intrinsic components of the curvature 2-form, namely the flat index components of the Riemann tensor, are functions only of the coordinates θ and r, while they do not depend on the time t and on the azimuthal angle φ. This is so because the Kerr-Newman metric is static and axial symmetric namely it admits the following two Killing vector fields:

k

;

k

(3.2.17)

∂t

∂φ

 

˜

 

Furthermore we also note that the non-vanishing components of the Riemann tensor are of the form:

Rabcd = (· · · )ab × δcdab + (· · · )ab × εabcd

(3.2.18)

Extracting from (3.2.16) the Riemann tensor Rabcd , we can calculate the Ricci tensor defined by:

Ricab ηamR

mn

(3.2.19)

bn

48

 

 

 

 

 

3 Rotating Black Holes and Thermodynamics

and we obtain the following result:

 

 

 

 

 

 

 

 

=

 

 

 

1

0

0

0

 

 

 

2ρ4

0

0

1

0

 

Ricab

 

 

q2

 

0

1

0

0

 

(3.2.20)

 

 

 

 

0

0

1

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

We wonder which kind of matter can produce a stress-energy tensor of the form (3.2.20) so that the constructed metric might be an exact solution of Einstein field equations. The answer is very simple: an electromagnetic field!

Let us consider the general form of the stress energy tensor for a Maxwell field. From the Maxwell action:

AMaxwell = − 1 d4x detgFμρ Fνσ gμν gρσ

4

varying with respect to the metric we obtain:

 

 

 

Tμν(Maxw) = −

1

Fμρ Fνσ gρσ +

1

gμν |F |2

 

 

 

2

8

where we defined:

(3.2.21)

(3.2.22)

|F |2 Fμρ Fνσ gμν gρσ = FacFbd ηabηcd

(3.2.23)

The stress-energy tensor Tμν(Maxw) is traceless (gμν Tμν(Maxw) = 0) and in flat indices takes the same form as in curved indices:

Tab(Maxw) = −

1

FacFbd ηcd +

1

ηab|F |2

(3.2.24)

 

 

 

2

8

For the particular case of an electromagnetic field of the form:

 

 

F01

0

 

 

0

 

 

0

 

 

 

 

 

0

F01

 

0

 

 

0

 

 

Fab

= 0

0

 

 

0

 

 

F23

 

 

 

 

0

0

F

23

 

0

 

 

 

 

 

 

 

 

 

 

 

Equation (3.2.24) yields the result:

 

 

 

 

 

 

 

 

 

T (Maxw)

1

F 2

F 2

0

1

0

0

 

 

 

 

 

 

1

0

 

0

0

 

ab

=

 

01 + 23

 

0

0

1 0

 

4

 

 

 

 

 

 

0

0

 

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.2.25)

(3.2.26)

Due to tracelessness of the stress-energy tensor, Einstein field equations reduce to:

Ricab = κTab(Maxw)

(3.2.27)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]