Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FREGRAVOL2.pdf
Скачиваний:
71
Добавлен:
05.06.2015
Размер:
8.65 Mб
Скачать

9.5 Conclusions

403

Similarly, using the inversion formula (C.4.3) presented in appendix we can write:

AP3 = −2Bα τ α +

4e Bαβ τ αβ

4e Bαβ Kαβ K

(9.4.72)

 

1

 

1

 

 

where {Bαβ , Bα } are the connection and vielbein of the internal coset manifold P3. Relying once again on the inversion formulae discussed in Appendix C.4 we

conclude that we can rewrite (9.4.51)–(9.4.55) as follows:

Ψ x|A = Φx|A

(9.4.73)

V a = Ea

(9.4.74)

V α = Eα

(9.4.75)

ωab = Eab

(9.4.76)

ωαβ = Eαβ

(9.4.77)

where the objects introduced above are the Maurer Cartan forms on the supercoset (9.4.2) according to:

Σ = L1 dL

= 2

41 Eabγab 2a γ5Ea

 

 

 

 

Φ

 

 

 

3

 

 

 

α

 

1

αβ

 

 

1

αβ

 

 

 

 

 

 

 

 

4ieΦγ5

τ α

τ αβ +

 

 

2eE

4 B

 

4 E

 

Kαβ K

(9.4.78)

Consequently the gauge completion of the B[2] form becomes:

B[2] =

1

τ 7) Φ

 

4e Φ(1

(9.4.79)

9.5 Conclusions

As we stressed in the introduction to the present very long chapter, the topics we might still address in this context are both numerous, relevant and challenging. We might discuss instanton solutions, compactifications on Calabi-Yau manifolds, the generic strategy of harmonic analysis to derive the spectra of given compactifications, toroidal compactifications with brane wrapping, D-brane solutions with conifolds sitting in the transverse dimensions to the brane and much more. Obviously there is neither room nor enough mathematical background in order to develop such topics and therefore it is time to stop.

We just hope that our reader has been able to follow our arguments up to this point. If this has happened, starting from the first intuitions about Lorentz symmetry in the first chapter of the first volume he has made a long and adventurous trip to

404

9 Supergravity: An Anthology of Solutions

the frontiers of current research in gravitational theories, little by little absorbing a remarkable wealth of geometrical lore and of consciousness about its physical meaning.

Hopefully our reader should by now be convinced that the geometrical seeds first implanted in the XIXth century by Gauss and Riemann, not only inspired Einstein and, through his mind, produced a beautiful and so far fully verified theory, but have still a lot to say about Gravity. Whether supersymmetric or not, Gravitation is certainly the most fundamental interaction among the fundamental ones, it governs the structure of the Universe and it is a manifestation of Geometry. Which geometry the humans will still debate for a long time.

References

1.Ferrara, S., Kallosh, R.: Supersymmetry and attractors. Phys. Rev. D 54, 1514–1524 (1996). hep-th/9602136

2.Ferrara, S., Kallosh, R., Strominger, A.: N = 2 extremal black holes. Phys. Rev. D 52, 5412– 5416 (1995). hep-th/9508072

3.Breitenlohner, P., Maison, D., Gibbons, G.W.: Four-dimensional black holes from KaluzaKlein theories. Commun. Math. Phys. 120, 295 (1988)

4.Ferrara, S., Sabharwal, S.: Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces. Nucl. Phys. B 332, 317 (1990)

5.Bergshoeff, E., Chemissany, W., Ploegh, A., Trigiante, M., Van Riet, T.: Generating geodesic flows and supergravity solutions. Nucl. Phys. B 812, 343 (2009). arXiv:0806.2310

6.Gibbons, G.W., Kallosh, R., Kol, B.: Moduli, scalar charges, and the first law of black hole thermodynamics. Phys. Rev. Lett. 77, 4992–4995 (1996). hep-th/9607108

7.Goldstein, K., Iizuka, N., Jena, R.P., Trivedi, S.P.: Non-supersymmetric attractors. Phys. Rev. D 72, 124021 (2005). arXiv:hep-th/0507096

8.Tripathy, P.K., Trivedi, S.P.: Non-supersymmetric attractors in string theory. J. High Energy Phys. 0603, 022 (2006). arXiv:hep-th/0511117

9.Kallosh, R.: New attractors. J. High Energy Phys. 0512, 022 (2005). arXiv:hep-th/0510024

10.Giryavets, A.: New attractors and area codes. J. High Energy Phys. 0603, 020 (2006). arXiv:hep-th/0511215

11.Kallosh, R., Sivanandam, N., Soroush, M.: The non-BPS black hole attractor equation. J. High Energy Phys. 0603, 060 (2006). arXiv:hep-th/0602005

12.Bellucci, S., Ferrara, S., Marrani, A.: On some properties of the attractor equations. Phys. Lett. B 635, 172 (2006). arXiv:hep-th/0602161

13.Bellucci, S., Ferrara, S., Gunaydin, M., Marrani, A.: Charge orbits of symmetric special geometries and attractors. Int. J. Mod. Phys. A 21, 5043–5098 (2006). hep-th/0606209

14.Andrianopoli, L., D’Auria, R., Ferrara, S., Trigiante, M.: Extremal black holes in supergravity. Lect. Notes Phys. 737, 661–727 (2008). hep-th/0611345

15.Frè, P., Gargiulo, F., Rulik, K., Trigiante, M.: The general pattern of Kac Moody extensions in supergravity and the issue of cosmic billiards. Nucl. Phys. B 741, 42 (2006). arXiv:hep-th/0507249

16.Frè, P., Sorin, A.S.: The arrow of time and the Weyl group: All supergravity billiards are integrable. Nucl. Phys. B 815, 430 (2009). arXiv:0710.1059

17.Frè, P., Sorin, A.S.: The integration algorithm for nilpotent orbits of G/H lax systems: For extremal black holes. arXiv:0903.3771

18.Frè, P., Sorin, A.S., Trigiante, M.: Integrability of supergravity black holes and new tensor classifiers of regular and nilpotent orbits. arXiv:1103.0848 [hep-th]

References

405

19.D’Auria, R., Frè, P.: BPS black-holes in supergravity: Duality groups, p-branes, central charges and entropy. In: Frè, P., Gorini, V., Magli, G., Moschella, U. (eds.) Classical and Quantum Black Holes, pp. 137–272. IOP Publishing, Bristol (1999)

20.Ceresole, A., Ferrara, S., Marrani, A.: Small N = 2 extremal black holes in special geometry. arXiv:1006.2007v1

21.Ceresole, A., Dall’Agata, G., Ferrara, S., Yeranyan, A.: First order flows for N = 2 extremal black holes and duality invariants. arXiv:0908.1110v2

22.Kaste, P., Minasian, R., Tommasiello, A.: Supersymmetric M-theory compactifications with fluxes on seven manifolds with G-structures. J. High Energy Phys. 0307, 004 (2003). arXiv:hep-th/0303127

23.Castellani, L., D’Auria, R., Frè, P.: SU(3) × SU(2) × U(1) from D = 11 supergravity. Nucl. Phys. B 239, 610 (1984)

24.Freund, P.G.O., Rubin, M.A.: Dynamics of dimensional reduction. Phys. Lett. B 97, 233 (1980)

25.Bilal, A., Derendinger, J.P., Sfetsos, K.: (Weak) G2 holonomy from self duality, flux and supersymmetry. Nucl. Phys. B 628, 112 (2002). arXiv:hep-th/0111274

26.D’Auria, R., Frè, P.: On the fermion mass spectrum of Kaluza Klein supergravity. Ann. Phys. 157, 1 (1984)

27.Englert, F.: Spontaneous compactification of 11-dimensional supergravity. Phys. Lett. B 119, 339 (1982)

28.Awada, M.A., Duff, M.J., Pope, C.N.: N = 8 supergravity breaks down to N = 1. Phys. Rev. Lett. 50, 294 (1983)

29.D’Auria, R., Frè, P., van Nieuwenhuizen, P.: N = 2 matter coupled supergravity from compactification on a coset G/H possessing an additional killing vector. Phys. Lett. B 136, 347 (1984)

30.Castellani, L., Romans, L.J.: N = 3 and N = 1 supersymmetry in a new class of solutions for D = 11 supergravity. Nucl. Phys. B 238, 683 (1984)

31.Castellani, L., Romans, L.J., Warner, N.P.: A classification of compactifying solutions for D = 11 supergravity. Nucl. Phys. B 241, 429 (1984)

32.Freedman, D.Z., Nicolai, H.: Multiplet shortening in Osp(N |4). Nucl. Phys. B 237, 342 (1984)

33.Ceresole, A., Frè, P., Nicolai, H.: Multiplet structure and spectra of N = 2 compactifications. Class. Quantum Gravity 2, 133 (1985)

34.Casher, A., Englert, F., Nicolai, H., Rooman, M.: The mass spectrum of supergravity on the round seven sphere. Nucl. Phys. B 243, 173 (1984)

35.Duff, M.J., Nisson, B.E.W., Pope, C.N.: Kaluza Klein supergravity. Phys. Rep. 130, 1 (1986)

36.Billó, M., Fabbri, D., Frè, P., Merlatti, P., Zaffaroni, A.: Shadow multiplets in AdS(4)/CFT(3) and the super-Higgs mechanism. Nucl. Phys. B 591, 139 (2000). arXiv:hep-th/0005220

37.Billó, M., Fabbri, D., Frè, P., Merlatti, P., Zaffaroni, A.: Rings of short N = 3 superfields in three dimensions and M-theory on AdS4 × N (0,1,0) . Class. Quantum Gravity 18, 1269 (2001). arXiv:hep-th/0005219

38.Frè, P., Gualtieri, L., Termonia, P.: The structure of N = 3 multiplets in AdS4 and the complete Osp(3|4) × SU(3) spectrum of M-theory on AdS4 × N (0,1,0) . Phys. Lett. B 471, 27 (1999).

arXiv:hep-th/9909188

39. Fabbri, D., Frè, P., Gualtieri, L., Reina, C., Tomasiello, A., Zaffaroni, A., Zampa, A.: 3D superconformal theories from Sasakian seven-manifolds: New nontrivial evidences for AdS(4)/CFT(3). Nucl. Phys. B 577, 547 (2000). arXiv:hep-th/9907219

40.Fabbri, D., Frè, P., Gualtieri, L., Termonia, P.: M-theory on AdS4 × M(111): The complete Osp(2|4) × SU(3) × SU(2) spectrum from harmonic analysis. Nucl. Phys. B 560, 617 (1999). arXiv:hep-th/9903036

41.D’Auria, R., Frè, P.: Universal Bose-Fermi mass-relations in Kaluza-Klein supergravity and harmonic analysis on coset manifolds with killing spinors. Ann. Phys. 162, 372 (1985)

42.Frè, P.: Gaugings and other supergravity tools of p-brane physics. arXiv:hep-th/0102114

406

9 Supergravity: An Anthology of Solutions

43.Frè, P., Grassi, P.A.: Pure spinor formalism for Osp(N |4) backgrounds. arXiv:0807.0044 [hepth]

44.Castellani, L., D’Auria, R., Frè, P.: Supergravity and Superstrings: A Geometric Perspective. World Scientific, Singapore (1991)

45.D’Auria, R., Frè, P., Grassi, P.A., Trigiante, M.: Superstrings on AdS4 × CP3 from supergravity. Phys. Rev. D 79, 086001 (2009). arXiv:0808.1282 [hep-th]

46.Aharony, O., Bergman, O., Jafferis, D.L., Maldacena, J.: N = 6 superconformal Chern- Simons-matter theories, M2-branes and their gravity duals. arXiv:0806.1218 [hep-th]

47.Benna, M., Klebanov, I., Klose, T., Smedback, M.: Superconformal Chern-Simons theories and AdS4/CFT3 correspondence. arXiv:0806.1519 [hep-th]

48.Schwarz, J.H.: Superconformal Chern-Simons theories. J. High Energy Phys. 0411, 078 (2004). arXiv:hep-th/0411077

49.Bagger, J., Lambert, N.: Comments on multiple M2-branes. J. High Energy Phys. 0802, 105 (2008). arXiv:0712.3738 [hep-th]

50.Bagger, J., Lambert, N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008). arXiv:0711.0955 [hep-th]

51.Bagger, J., Lambert, N.: Modeling multiple M2’s. Phys. Rev. D 75, 045020 (2007). arXiv:hep-th/0611108

52.Gustavsson, A.: Algebraic structures on parallel M2-branes. arXiv:0709.1260 [hep-th]

53.Gustavsson, A.: Selfdual strings and loop space Nahm equations. J. High Energy Phys. 0804, 083 (2008). arXiv:0802.3456 [hep-th]

54.Distler, J., Mukhi, S., Papageorgakis, C., Van Raamsdonk, M.: M2-branes on M-folds. J. High Energy Phys. 0805, 038 (2008). arXiv:0804.1256 [hep-th]

55.Lambert, N., Tong, D.: Membranes on an orbifold. arXiv:0804.1114 [hep-th]

56.Arutyunov, G., Frolov, S.: Superstrings on AdS4 × CP3 as a coset sigma-model. arXiv:0806.4940 [hep-th]

57.Stefanski, B. Jr.: Green-Schwarz action for type IIA strings on AdS4 × CP3. arXiv:0806.4948 [hep-th]

58.Bonelli, G., Grassi, P.A., Safaai, H.: Exploring pure spinor string theory on AdS4 × CP3. arXiv:0808.1051 [hep-th]

59.Gomis, J., Sorokin, D., Wulff, L.: The complete AdS4 × CP3 superspace for the type IIA superstring and D-branes. J. High Energy Phys. 0903, 015 (2009). arXiv:0811.1566 [hep-th]

60.Frè, P., Grassi, P.A.: Pure spinor formalism for Osp(N |4) backgrounds. arXiv:0807.0044 [hepth]

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]