Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FREGRAVOL2.pdf
Скачиваний:
75
Добавлен:
05.06.2015
Размер:
8.65 Mб
Скачать

422

10 Conclusion of Volume 2

As it is always the case, the Maurer Cartan equations are just a property of the (super) Lie algebra and hold true independently of the (super) manifold on which the 1-forms are realized: on the supergroup manifold or on different supercosets of the same supergroup.

C.2 The Relevant Supercosets and Their Relation

Let us also consider the following pure fermionic coset:

M 0|4N

 

Osp(N |4)

(C.2.1)

 

 

osp

= SO(

)

×

Sp(4, R)

 

 

 

N

 

 

 

There is an obvious relation between these two supercosets that can be formulated in the following way:

Mosp4|4N AdS4 × Mosp0|4N

(C.2.2)

In order to explain the actual meaning of (C.2.2) we proceed as follows. Let the graded matrix L Osp(N |4) be the coset representative of the coset Mosp4|4N , such that the Maurer Cartan form Λ of (C.1.5) can be identified as:

 

 

Λ = L1 dL

 

 

 

(C.2.3)

Let us now factorize L as follows:

 

 

 

 

 

 

 

 

 

L = LF LB

 

 

 

(C.2.4)

where LF is a coset representative for the coset:

 

 

 

 

 

Osp(N |4)

#

L

F

(C.2.5)

 

 

SO(

)

×

Sp(4, R)

 

 

 

N

 

 

 

 

 

 

and LB is the Osp(N |4) embedding of a coset representative of AdS4, namely:

 

 

LB

 

 

 

 

 

 

Sp(4, R)

 

 

LB =

 

 

0

 

;

 

 

# LB

(C.2.6)

 

 

 

 

 

 

 

 

 

 

 

 

0

 

1N

 

 

 

SO(1, 3)

In this way we find:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Λ

=

L1

Λ

F

L

B +

L1 dL

B

 

(C.2.7)

 

 

 

B

 

 

 

B

 

 

Let us now write the explicit form of ΛF in analogy to (C.1.5):

ΛF =

2

 

F

 

ΘA

3

(C.2.8)

 

 

 

 

 

 

eAAB

4iAγ5

 

 

 

 

 

 

C Auxiliary Information About Some Superalgebras

423

where ΘA is a Majorana-spinor valued fermionic 1-form and where

F is an

sp(4, R) Lie algebra valued 1-form presented as a 4 × 4 matrix. Both ΘA as F and AAB depend only on the fermionic θ coordinates and differentials.

On the other hand we have:

 

 

 

 

LB1 dLB =

0B

 

 

(C.2.9)

0

 

 

0

 

 

 

 

 

 

 

where the ΩB is also an sp(4, R) Lie algebra valued 1-form presented as a 4 × 4 matrix, but it depends only on the bosonic coordinates xμ of the anti de Sitter space AdS4. Indeed, according to (C.1.5) we can write:

B = −

1

 

4 Babγab 2a γ5Ba

(C.2.10)

where {Bab, Ba } are respectively the spin-connection and the vielbein of AdS4, just as {Bαβ , Bα } are the connection and vielbein of the internal coset manifold M7.

Inserting now these results into (C.2.7) and comparing with (C.1.5) we obtain:

 

 

 

 

 

ψA = LB1ΘA

 

 

 

 

 

 

 

 

 

 

1

 

 

 

AAB = AAB

 

 

 

 

 

 

 

 

(C.2.11)

ωabγ

ab

2

γ

Ea

 

1

Babγ

ab

2

γ

Ba

+

L1

 

L

 

4

 

 

 

 

a

5

 

= − 4

a

5

 

B

F

 

B

The above formulae encode an important information. They show how the supervielbein and the superconnection of the supermanifold (C.1.9) can be constructed starting from the vielbein and connection of AdS4 space plus the Maurer Cartan forms of the purely fermionic supercoset (C.2.1). In other words formulae (C.2.11) provide the concrete interpretation of the direct product (C.2.2). This will also be our starting point for the actual construction of the supergauge completion in the case of maximal supersymmetry and for its generalization to the cases of less supersymmetry.

C.2.1 Finite Supergroup Elements

We studied the osp(N |4) superalgebra but for our purposes we cannot confine ourselves to the superalgebra, we need also to consider finite elements of the corresponding supergroup. In particular the supercoset representative. Elements of the supergroup are described by graded matrices of the form:

M =

A

Θ

(C.2.12)

 

 

Π

D

where A, D are submatrices made out of even elements of a Grassmann algebra while Θ, Π are submatrices made out of odd elements of the same Grassmann algebra. It is important to recall, that the operations of transposition and Hermitian

424

10 Conclusion of Volume 2

conjugation are defined as follows on graded matrices:

MT =

2

ATT

ΠT

3

 

 

 

T

 

 

 

Θ

D

(C.2.13)

2 3

M=

AΠ

ΘD

This is done in order that the supertrace should preserve the same formal properties enjoyed by the trace of ordinary matrices:

Str(M) = Tr(A) Tr(D)

(C.2.14)

Str(M1M2) = Str(M2M1)

Equations (C.2.13) and (C.2.14) have an important consequence. The consistency of the equation:

M= MT

(C.2.15)

implies that the complex conjugate operation on a super matrix must be defined as follows:

M

=

 

A

Θ

(C.2.16)

Π

D

 

 

Let us now observe that in the Majorana basis which we have adopted we have:

C

=

i

2

ε

 

 

 

 

0

 

3

iε

 

 

 

 

 

 

 

 

 

1

 

 

 

 

7

 

 

 

0

 

 

1N ×N

 

 

= ˆ

(C.2.17)

 

 

 

4e

 

 

 

 

2

 

 

 

 

 

0

3

 

 

H

=

 

 

iε

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

7

 

0

1N ×N

 

 

 

 

 

4e

 

 

 

 

where the 4 × 4 matrix ε is given by (C.3.7). Therefore in this basis an orthosymplectic group element L OSp(N |4) which satisfies:

 

 

 

LT CL = C

 

(C.2.18)

 

 

 

7

 

7

 

 

 

 

 

LH L

 

H

 

(C.2.19)

has the following structure:

 

7

= 7

 

 

L

=

2

S

 

exp[−i π4 ]Θ

3

(C.2.20)

 

exp[−i π4 ]Π

O

 

 

 

 

where the bosonic sub-blocks S , O are respectively 4 × 4 and N × N and real, while the fermionic ones Θ, Π are respectively 4 × N and N × 4 and also real.

The orthosymplectic conditions (C.2.18) translate into the following conditions on the sub-blocks:

C Auxiliary Information About Some Superalgebras

425

1

 

S T εS = ε i 4e Π T Π

 

OT O = 1 + i4T εΘ

(C.2.21)

1

 

 

S T εΘ = −

 

Π T O

 

4e

 

As we see, when the fermionic off-diagonal sub-blocks are zero the diagonal ones are respectively a symplectic and an orthogonal matrix.

If the graded matrix L is regarded as the coset representative of either one of the two supercosets (C.1.9), (C.2.1), we can evaluate the explicit structure of the left-invariant one form Λ. Using the M 0|4×N style of the Maurer Cartan equations (C.1.10) we obtain:

 

 

 

 

 

=

4e exp[−i π4 ]ΦT ε

 

 

 

eA

]Φ

 

 

 

Λ

 

L

 

 

1 dL

 

 

 

 

 

 

 

exp[−i π4

 

 

(C.2.22)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the 1-forms

 

 

 

, A and Φ can be explicitly calculated, using the explicit form

of the inverse coset representative:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

2

π

T

 

 

 

 

[−

T

 

 

 

3

 

 

 

 

 

1

 

 

 

εS T ε

 

exp i π4

]

1

εΠ T

 

 

 

 

L

 

 

 

 

 

 

4e

 

(C.2.23)

 

 

 

 

 

 

 

exp[−i 4 ]4

ε

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eA = −OT dO i4T ε dΘ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ω = −εS T ε dS i

1

Π T

 

 

 

 

(C.2.24)

 

 

 

 

 

 

 

 

 

4e

 

 

 

 

 

 

 

 

 

 

 

 

 

Φ = −εST ε dΘ +

1

 

εΠ T dO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4e

 

 

 

 

 

C.2.2 The Coset Representative of OSp(N |4)/SO(N ) × Sp(4)

It is fairly simple to write an explicit form for the coset representative of the fermionic supermanifold

M 0|4×N

 

OSp(N |4)

 

 

(C.2.25)

 

 

N

 

 

= Sp(4, R)

×

SO(

)

 

 

 

 

 

by adopting the upper left block components Θ of the supermatrix (C.2.20) as coordinates. It suffices to solve (C.2.21) for the sub blocks S , O , Π . Such an explicit solution is provided by setting:

O(Θ) = 1 + 4iT εΘ 1/2

S (Θ) = 1 + 4ieΘΘT ε 1/2

(C.2.26)

Π= 4e 1 + 4iT εΘ 1/2ΘT ε 1 + 4ieΘΘT ε 1/2

= 4T ε

426

10 Conclusion of Volume 2

In this way we conclude that the coset representative of the fermionic supermanifold (C.2.25) can be chosen to be the following supermatrix:

L(Θ) =

2

(1 + 4i

π

 

T

 

exp[−iT4

]Θ

1/2

3

(C.2.27)

 

 

 

eΘΘT ε)1/2

π

 

 

 

 

 

 

exp[−i 4

]4

 

ε

(1 + 4ieΘ εΘ)

 

 

 

By straightforward steps from (C.2.23) we obtain the inverse of the supercoset element (C.2.27) in the form:

 

 

(Θ)

 

 

( Θ)

2

 

+

π

 

T

 

 

T

1/2

3

(C.2.28)

L

 

1

 

=

L

=

(1

 

4ieΘΘT ε)1/2

 

exp[−i π4

]Θ

 

 

 

 

 

 

 

 

exp[−i 4

]4

 

ε

(1 + 4i

εΘ)

 

 

 

Correspondingly we work out the explicit expression of the Maurer Cartan forms:

eA = 1 + 4iT εΘ 1/2 d 1 + 4iT εΘ 1/2 i4T ε dΘ

 

Φ = 1 + 4ieΘΘT ε 1/2 + Θ d 1 + 4iT εΘ 1/2

(C.2.29)

= 1 + 4ieΘΘT ε 1/2 d 1 + 4ieΘΘT ε 1/2 i4eΘ dΘT ε

 

C.3 D = 6 and D = 4 Gamma Matrix Bases

In the discussion of the AdS4 × P3 compactification we need to consider the decomposition of the D = 10 gamma matrix algebra into the tensor product of the so(6) Clifford algebra times that of so(1, 3). In this section we discuss an explicit basis for the so(6) gamma matrix algebra using that of so(7). Conventionally we identify the 7-matrix τ7 with the chirality matrix in d = 6.

C.3.1 D = 6 Clifford Algebra

In this section, the indices α, β, . . . run on six values and denote the vector indices of so(6). In order to discuss the gamma matrix basis we introduce so(7) indices

 

= α, 7

(C.3.1)

α

which run on seven values and we define the Clifford algebra with negative metric:

{τ

 

, τ

 

} = −δ

 

(C.3.2)

α

β

αβ

C Auxiliary Information About Some Superalgebras

427

This algebra is satisfied by the following, real, antisymmetric matrices:

τ1

τ3

τ5

 

0

0

 

1

0

 

0

0

0

0

 

 

 

0

0

 

0

0

 

0

0

0

1

 

 

 

0

1 0 0 0 0 0

0

 

 

 

0

0

 

0

0

 

0

0

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

0

0

 

0

 

1

0

0

 

;

=

0

0

 

0

0

 

1

 

0

0

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

0

 

1

 

0

0

0

0

 

 

 

 

1

0

 

0

 

 

0

0

0

0

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

0 0

0

0

0

0

 

 

0

1

0

0

 

0

0

0

0

 

 

 

0

0

0

0

 

0

0

0

1

 

 

 

0

0

0

0

1

0

0

0

 

 

 

0

0

0

1

 

0

0

0

 

 

 

 

0

 

;

=

0

0

0

0

 

0

0

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

0

 

0

 

1

0

0

 

 

 

0

0

 

1

0

 

0

 

0

0

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

0 0

0

1

0

 

 

0

0

0

 

0

 

0

1

 

0

0

 

 

 

0

0

0

1 0

0

0

0

 

 

 

0

0

1

 

0

 

0

0

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

0

 

0

0

 

0

1

 

;

=

 

1

0

0

 

0

 

0

0

 

0

0

 

 

 

 

 

 

 

 

 

 

1

0

 

0

 

0

0

 

0

0

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

0

1

0

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τ2

τ4

τ6

 

0

0

 

 

0

 

 

0

 

0

 

0

0

1

 

 

0

0

 

 

1

 

0

 

0

 

0

0

0

 

1

0

 

 

0

 

 

0

 

0

 

0

0

0

 

0

0

 

 

0

 

 

0

 

0

 

1

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

 

0

 

 

0

 

0

 

0

1

0

 

=

0

0

 

 

0

 

 

 

1

0

 

0

0

0

 

 

 

 

 

 

 

 

 

 

0

0

 

 

0

 

 

 

 

1

0

0

0

 

 

 

 

 

 

0

 

 

 

0

 

1

 

0

 

 

0

 

 

 

0

0

0

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0 0 0 0 1 0

0

 

0

0

 

 

0

0

 

 

0

0

1

0

 

0

0

 

 

0

0

 

 

1

0

 

0

0

 

0

0

 

 

0

0

 

 

0

0

 

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

1

0

 

 

0

0

 

0

0

 

=

0

1

 

 

0

 

 

0

0

 

0

0

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

 

 

0

0

 

 

0

0

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

 

0

1

 

0

0

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

 

0

1

 

0

0

 

(C.3.3)

 

 

 

 

0

0

 

 

0

0

 

 

0

0

 

1

0

 

0

0

 

0 0

 

 

0 0 0 0

1

0

 

0

1

 

0

0

 

0

0

 

0

0

 

 

1

 

 

 

0

0

 

0

0

 

0

0

 

 

0

 

 

 

 

 

=

0

0

 

 

0

0

 

0

0

 

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

 

1

0

 

0

0

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

 

0

0

 

0

1

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

0

1

0

0

0

 

 

 

0

0

0

1

0

0

0

0

 

 

 

0

0

0

0

0

1

0

0

 

τ7

 

1

0

0

0

0

0

0

0

 

 

 

 

1

0

0

0

0

0

0

 

 

 

0

 

 

=

0

 

 

1

0

0

0

0

0

 

 

 

0

 

 

 

0

0

 

0

0

0

0

1

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

0

0

0

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C.3.2 D = 4 γ -Matrix Basis and Spinor Identities

In this section we construct a basis of so(1, 3) realizes the isomorphism so(2, 3) sp(4, R) text. Naming σi the standard Pauli matrices:

gamma matrices such that it explicitly with the conventions used in the main

 

=

1

0

;

 

=

i

0

;

 

=

0

 

1

 

σ1

 

0

1

 

σ2

 

0

i

 

σ3

 

1

0

(C.3.4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

428

10 Conclusion of Volume 2

we realize the so(1, 3) Clifford algebra:

 

 

{γa , γb} = 2ηab;

ηab = diag(+, , , )

(C.3.5)

by setting:

 

 

γ0 = σ2 1;

γ1 = iσ3 σ1

 

γ2 = iσ1 1;

γ3 = iσ3 σ3

(C.3.6)

γ5 = σ3 σ2; C = iσ2 1

where γ5 is the chirality matrix and C is the charge conjugation matrix. Making now reference to (C.1.2) and (C.1.3) of the main text we see that the antisymmetric matrix entering the definition of the orthosymplectic algebra, namely C γ5 is the following one:

C

i

0

0

0

1

,

C γ5 ε

i

0

0

1

0

(C.3.7)

 

 

0

0

1

0

 

 

 

0

0

0

1

 

=

1

0

0

0

 

= =

 

0

1

0

0

 

 

 

0

1 0

0

 

 

 

 

1 0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

namely it is proportional, through an overall i-factor, to a real completely offdiagonal matrix. On the other hand all the generators of the so(2, 3) Lie algebra, i.e. γab and γa γ5 are real, symplectic 4 × 4 matrices. Indeed we have

γ01

0

 

0

1

 

0

 

 

γ02

0 1

0

0

 

 

0

 

0

0

1

 

 

 

1

0

0

0

 

 

=

0

1

0

 

0

 

;

 

= 0 0 1

0

 

 

 

1

0

0

 

0

 

 

 

0 0

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ12

0

 

0

0

1

 

 

γ13

0 0 1

0

 

 

 

0

 

0

1

0

 

 

 

0

0

0

1

 

= 1

 

0

0

0

;

 

 

= 0 1

0

0

 

 

 

0

 

1

0

0

 

 

 

1 0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ23

1

 

0

0

0

 

 

γ34

 

0

 

0

0

1 (C.3.8)

 

 

0

 

1

0

0

 

 

 

 

0

 

0

1

0

 

 

=

0

 

0

0

1

;

 

 

= 1

 

0 0

0

 

 

 

0

 

0

1

0

 

 

 

 

0

 

1 0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ0γ5

0

 

0

1

0

 

 

γ1γ5

0

 

1

0

0

 

=

0

 

0

0

1

;

 

 

=

1

 

0

0

0

 

0

 

1

0

0

 

 

0

 

0 1

0

 

 

 

1 0

0

0

 

 

 

 

0

 

0

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

0

1

 

0

 

 

 

 

1 0 0 0

 

 

 

0

 

0

0

 

1

 

 

 

 

0

1

0

0

 

 

γ2γ5

=

0

 

1

0

 

0

 

;

 

γ3γ5

= 0 0 0 1

 

 

 

 

1 0

0

 

0

 

 

 

 

0 0 1 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]