
- •Е.Л. Кон, м.М. Кулагина надежность и диагностика компонентов инфокоммуникационных и информационно-управляющих систем
- •Оглавление
- •1. Основные теоретические сведения 9
- •2. Надежность аппаратурного обеспечения 31
- •3. Создание надежного программного обеспечения 130
- •4. Диагностика состояния сложных технических систем 205
- •Введение
- •1. Основные теоретические сведения
- •1.1. Информационно-управляющие и инфокоммуникационные системы
- •1.2. Основные определения теории надежности
- •1.2.1. Надежность и ее частные стороны
- •1.2.2. Виды надежности
- •1.2.3. Отказы
- •1.2.4. Эффективность
- •1.2.5. Восстановление
- •1.3. Понятие случайных событий и случайных величин
- •1.3.1. Надежность систем при основном (последовательном) и параллельном соединении элементов
- •1.3.2. Основное соединение элементов
- •1.3.3. Параллельное соединение элементов
- •1.4. Элементы теории нечетких множеств
- •1.4.1. Понятие принадлежности и основные операции для четких подмножеств
- •1.4.2. Понятие принадлежности и основные операции для нечетких подмножеств
- •1.4.3. Отношение доминирования
- •1.4.4. Простейшие операции над нечеткими множествами
- •1.4.5. Расстояние Хэмминга
- •Вопросы и задания
- •Список литературы
- •2. Надежность аппаратурного обеспечения
- •2.1. Надежность невосстанавливаемых систем без резервирования
- •2.1.1. Показатели надежности невосстанавливаемых объектов
- •2.1.2. Законы распределения случайных величин, используемые в теории надежности
- •Показательное (экспоненциальное) распределение
- •Усеченное нормальное распределение
- •Распределение Вейбулла
- •Гамма-распределение
- •Практическая область применения законов распределения времени безотказной работы
- •2.1.3. Использованиеи-характеристик для решения практических задач
- •2.1.4. Особенности расчета надежности при проектировании различных систем
- •2.1.5. Расчет надежности по блок-схеме системы
- •2.1.6. Расчет надежности при подборе элементов системы
- •2.1.7. Расчет надежности системы с учетом режимов работы элементов
- •2.1.8. Учет цикличности работы аппаратуры
- •2.2. Надежность невосстанавливаемых систем с резервированием
- •2.2.1. Пути повышения надежности
- •2.2.2. Методы резервирования
- •2.2.3. Расчет надежности сложных систем при постоянно включенном резерве
- •2.2.4. Расчет надежности системы при резервировании замещением
- •2.2.5. Резервирование замещением в случае нагруженного резерва
- •2.2.6. Резервирование замещением в случае облегченного резерва
- •2.2.7. Резервирование замещением в случае ненагруженного резерва
- •2.2.8. Расчет надежности систем с функциональным резервированием
- •2.3. Расчет надежности восстанавливаемых систем
- •2.3.1. Критерий надежности систем с восстановлением
- •Характеристики потока отказов
- •Характеристики потока восстановления
- •Комплексные характеристики надежности систем с восстановлением
- •2.3.2. Расчет надежности по графу работоспособности объекта
- •2.3.3. Определение среднего времени наработки на отказ системы с восстановлением
- •2.3.4. Расчет надежности систем с восстановлением при основном (последовательном) и параллельном соединении элементов
- •2.3.5. Расчет надежности сложных инфокоммуникационных систем
- •Структура и функции стс
- •Определение надежностных характеристик блоков стс
- •Составление структурно-логической схемы надежности и графа состояний
- •2.3.5.4. Расчет коэффициента готовности стс
- •Определение надежностных характеристик блоков аиис
- •Составление структурно-логической схемы надежности и графа переходов
- •Расчет коэффициента готовности аиис «Алтайэнерго»
- •Расчет коэффициента готовности аиис
- •2.4. Расчет надежности восстанавливаемых систем при наличии системы контроля
- •2.4.1. Система встроенного контроля абсолютно надежна
- •2.4.2. Система встроенного контроля самопроверяемая, и ее отказ обнаруживается сразу же
- •2.4.3. Система встроенного самоконтроля несамопроверяемая
- •2.5. Расчет надежности в условиях нечетко заданных исходных данных
- •2.5.1. Выбор оптимального варианта для невосстанавливаемых систем
- •2.5.2. Выбор оптимального варианта для восстанавливаемых систем
- •2.6. Расчет надежности систем на этапе эксплуатации
- •2.6.1. Планирование и расчет периодов профилактик
- •2.6.2. Планирование и расчет числа запасных изделий
- •Вопросы и задания
- •Список литературы
- •3. Создание надежного программного обеспечения
- •3.1. Надежность программного обеспечения
- •3.1.1. Ошибки в по и их типы
- •Типы ошибок в программном обеспечении
- •3.1.2. Причины появления ошибок в программном обеспечении
- •3.1.3. Отношения с пользователем (заказчиком)
- •3.1.4. Принципы и методы обеспечения надежности
- •3.1.5. Последовательность выполнения процессов разработки программного обеспечения
- •3.1.6. Сравнение надежности аппаратуры и программного обеспечения
- •3.2. Основные этапы проектирования программного обеспечения
- •3.2.1. Правильность проектирования и планирование изменений
- •3.2.2. Требования к по
- •3.2.3. Цели программного обеспечения
- •Цели продукта
- •Цели проекта
- •Общие правила постановки целей
- •Оценка целей
- •3.2.4. Внешнее проектирование
- •Проектирование взаимодействия с пользователем
- •Подготовка внешних спецификаций
- •Проверка правильности внешних спецификаций
- •3.2.5. Проектирование архитектуры программы
- •Независимость модулей
- •Прочность модулей
- •Сцепление модулей
- •3.2.6. Методы непосредственного повышения надежности модулей
- •Пассивное обнаружение ошибок
- •Активное обнаружение ошибок
- •Исправление ошибок и устойчивость к ошибкам
- •Изоляция ошибок
- •Обработка сбоев аппаратуры
- •3.2.7. Проектирование и программирование модуля
- •Внешнее проектирование модуля
- •Проектирование логики модуля
- •Пошаговая детализация
- •3.2.8. Стиль программирования
- •Ясность программирования
- •Использование языка
- •Микроэффективность
- •Комментарии
- •Определения данных
- •Структура модуля
- •3.3. Тестирование и верификация программ
- •3.3.1. Проблемы тестирования программ
- •3.3.2. Технологии тестирования программ
- •3.3.3. Принципы тестирования
- •3.4. Модели надежности по
- •3.4.1. Модель роста надежности
- •3.4.2. Другие вероятностные модели
- •3.4.3. Статистическая модель Миллса
- •3.4.4. Простые интуитивные модели
- •3.4.5. Объединение показателей надежности
- •Вопросы и задания
- •Список литературы
- •4. Диагностика состояния сложных технических систем
- •4.1. Предмет, задачи и модели технической диагностики
- •4.1.1. Предмет технической диагностики
- •4.1.2. Основные аспекты, задачи и модели технической диагностики
- •4.1.3. Классификация диагностических процедур и их краткая характеристика
- •4.2. Построение тестов
- •4.2.1. Построение тестового набора методом активизации существенного пути
- •4.2.2. Алгоритм построения тестового набора для комбинационной схемы методом активизации существенного пути
- •4.2.3. Построение тестов для схем с памятью
- •Комбинационная модель последовательностной схемы
- •Построение тестовой последовательности по комбинационной модели последовательностной схемы
- •4.3. Функциональный контроль и диагностирование сложных технических систем
- •4.3.1. Полностью самопроверяемые цифровые устройства
- •4.3.2. Схемы встроенного контроля
- •4.3.3. Схемы сжатия
- •4.3.4. Микропроцессор как объект функционального контроля
- •4.3.5. Модель мп с точки зрения функционального контроля
- •4.3.6. Диагностическая модель уу мп системы
- •4.3.7. Критерии оценки методов контроля механизмов выборки, хранения и дешифрации команд
- •4.3.8. Встроенный функциональный контроль механизмов хранения и дешифрации команд
- •Методы пошагового контроля правильности хода программ
- •Методы контроля, реализующие раскраску команд
- •Метод контроля, использующий раскраску без учета структуры команд
- •Преобразованная программа приведена ниже:
- •Цвет Четность Цвет гса
- •Метод контроля команд, реализующий раскраску с учетом структуры команды
- •Раскраска без внесения в команду избыточных разрядов
- •Методы контроля механизмов дешифрации и хранения команд с помощью веса перехода
- •Метод контроля с помощью алгебраических кодов
- •Методы блокового контроля правильности хода программ
- •Блоковый контроль программ по методу разбиения программы на фазы (блоки)
- •Блоковый контроль правильности хода программ с помощью сигнатур
- •Метод контроля программ на основе полиноминальной интерпретации схем алгоритмов (программ)
- •Сравнительный анализ свк, реализующих методы блокового и пошагового контроля
- •4.4. Экспертные системы диагностирования сложных технических систем
- •4.4.1. Обучение и его модели. Самообучение
- •4.4.2. Экспертные системы и принципы их построения
- •4.4.3. Проблема разделения в самообучаемых экспертных системах
- •4.4.4. Алгоритмы обучения экспертных систем
- •Частота события находится по следующей формуле:
- •4.4.5. Асу «интеллектуальным зданием»
- •4.4.6. Система, принимающая решения по максимальной вероятности
- •4.4.7. Система, принимающая решения по наименьшему расстоянию
- •4.4.8. Повышение достоверности решений экспертной системы
- •4.4.9. Прогнозирование технического состояния узлов
- •Вопросы и задания
- •Список литературы
- •Приложение Интенсивность отказов компонентов иус
- •Кон Ефим Львович, Кулагина Марина Михайловна надежность и диагностика компонентов инфокоммуникационных и информационно-управляющих систем
4.2. Построение тестов
Построение тестов является обратной задачей диагноза. Напомним ее постановку [1]. Определить подмножество элементарных проверок Tij, различающих заданную пару неисправностей (Fi, Fj) объекта диагноза (ОД). Решение этой задачи для всех возможных пар неисправностей дает тест поиска места дефекта. Обратная задача относится к классу NP-полных или трудноразрешимых задач, решение которых может быть получено только полным перебором. Поэтому на практике ограничиваются случаем, когда одним из элементов пары является исправное устройство. В такой постановке результатом является проверяющий тест.
Пусть f(x) – функция, реализуемая исправным ОД, а f (x) – неисправным. Тогда решение логического уравнения f(x) mod2 f (x) = 1 будет решением обратной задачи диагноза. f (x) находится из диагностической модели ОД.
В практическом построении тестов используется структурная логическая модель ОД, когда заданы элементы и связи между ними. Нахождение элементарных проверок по структурной модели базируется на понятии существенного пути, лежащего в основе организации перебора вариантов решения.
Пусть в объекте диагноза имеется некоторый дефект. Из очевидных соображений следует, что одиночный дефект может быть обнаружен элементарным тестом, обладающим следующими свойствами.
Первое свойство состоит в том, что возникшая неисправность проявляется, т.е. вызывает появление значения хотя бы одного внутреннего сигнала ОД, отличного от значения, которое этот сигнал имел бы в исправном состоянии. Это свойство называют условием проявления неисправности.
Второе свойство формулируется следующим образом. Значения сигналов, вызванные проявлением неисправности, передаются на один или несколько выходов ОД так, чтобы они отличались для исправного и неисправного случаев. Это означает образование существенного (активизированного) пути распространения эффекта неисправности в ОД.
Рассмотрим фрагмент логической схемы (рис. 4.7). Неисправность С0 на входе d элемента ИЛИ может быть обнаружена на его выходе набором (d = 1, e = 0, f = 0). Этот входной набор также обнаруживает неисправность c = С0. Запись значения сигнала в виде 1/0 (0/1) означает 1(0) в исправном случае и 0(1) в неисправном случае.
Нельзя непосредственно наблюдать значение сигнала во внутренней точке с, поэтому необходимо задать входы элемента И так, чтобы наблюдать эффект неисправности на его выходе, т.е. (a = 1, b = 1). При этих значениях изменение сигнала на входе с приводит к изменению сигнала на выходе g. В этом примере d – c – g – существенный (активизированный) путь, значения сигналов на d, e и f – условия проявления неисправности, а на b и a – условия активизации.
4.2.1. Построение тестового набора методом активизации существенного пути
Идея этого метода заключается в выборе пути от места неисправности, скажем от элемента А (неисправность Сх) через последовательность элементов B, C, … , Z к некоторому выходу схемы y (рис. 4.8). Пути в схеме могут быть как одномерные, так и многомерные, т.е. проходящие через разветвления сразу в нескольких направлениях.
Рис. 4.8. Выбор пути
Значения непомеченных входов элементов B, C, …, Z выбираются по второму свойству так, что значения выходов элементов определяются только значениями помеченных входов, а о значении выхода элемента A можно сделать вывод, наблюдая выход z элемента Z. Значения входов элемента A должны быть заданы так, чтобы о наличии или отсутствии неисправности можно было бы судить по значению сигнала на его выходе. Эти действия называют прямой фазой активизации существенного пути или просто активизацией. Необходимо далее так установить внешние входы, чтобы обеспечить требуемые значения на входах элементов А, B, C, …, Z. Для этого прослеживаются назад пути по схеме от входов элементов А, B, C, …, Z до внешних входов схемы и выбираются соответствующие значения сигналов на входах задействованных элементов. Эти действия называют обратной фазой активизации существенного пути, или доопределением.
Как прямая, так и обратная фазы связаны с перебором вариантов. Выбор очередного варианта происходит при возникновении противоречия в момент присвоения значений линиям схемы. Задача сокращения перебора решается путем как можно более раннего обнаружения противоречия. Это приводит к уменьшению прохождения числа путей в дереве решений.