
- •Е.Л. Кон, м.М. Кулагина надежность и диагностика компонентов инфокоммуникационных и информационно-управляющих систем
- •Оглавление
- •1. Основные теоретические сведения 9
- •2. Надежность аппаратурного обеспечения 31
- •3. Создание надежного программного обеспечения 130
- •4. Диагностика состояния сложных технических систем 205
- •Введение
- •1. Основные теоретические сведения
- •1.1. Информационно-управляющие и инфокоммуникационные системы
- •1.2. Основные определения теории надежности
- •1.2.1. Надежность и ее частные стороны
- •1.2.2. Виды надежности
- •1.2.3. Отказы
- •1.2.4. Эффективность
- •1.2.5. Восстановление
- •1.3. Понятие случайных событий и случайных величин
- •1.3.1. Надежность систем при основном (последовательном) и параллельном соединении элементов
- •1.3.2. Основное соединение элементов
- •1.3.3. Параллельное соединение элементов
- •1.4. Элементы теории нечетких множеств
- •1.4.1. Понятие принадлежности и основные операции для четких подмножеств
- •1.4.2. Понятие принадлежности и основные операции для нечетких подмножеств
- •1.4.3. Отношение доминирования
- •1.4.4. Простейшие операции над нечеткими множествами
- •1.4.5. Расстояние Хэмминга
- •Вопросы и задания
- •Список литературы
- •2. Надежность аппаратурного обеспечения
- •2.1. Надежность невосстанавливаемых систем без резервирования
- •2.1.1. Показатели надежности невосстанавливаемых объектов
- •2.1.2. Законы распределения случайных величин, используемые в теории надежности
- •Показательное (экспоненциальное) распределение
- •Усеченное нормальное распределение
- •Распределение Вейбулла
- •Гамма-распределение
- •Практическая область применения законов распределения времени безотказной работы
- •2.1.3. Использованиеи-характеристик для решения практических задач
- •2.1.4. Особенности расчета надежности при проектировании различных систем
- •2.1.5. Расчет надежности по блок-схеме системы
- •2.1.6. Расчет надежности при подборе элементов системы
- •2.1.7. Расчет надежности системы с учетом режимов работы элементов
- •2.1.8. Учет цикличности работы аппаратуры
- •2.2. Надежность невосстанавливаемых систем с резервированием
- •2.2.1. Пути повышения надежности
- •2.2.2. Методы резервирования
- •2.2.3. Расчет надежности сложных систем при постоянно включенном резерве
- •2.2.4. Расчет надежности системы при резервировании замещением
- •2.2.5. Резервирование замещением в случае нагруженного резерва
- •2.2.6. Резервирование замещением в случае облегченного резерва
- •2.2.7. Резервирование замещением в случае ненагруженного резерва
- •2.2.8. Расчет надежности систем с функциональным резервированием
- •2.3. Расчет надежности восстанавливаемых систем
- •2.3.1. Критерий надежности систем с восстановлением
- •Характеристики потока отказов
- •Характеристики потока восстановления
- •Комплексные характеристики надежности систем с восстановлением
- •2.3.2. Расчет надежности по графу работоспособности объекта
- •2.3.3. Определение среднего времени наработки на отказ системы с восстановлением
- •2.3.4. Расчет надежности систем с восстановлением при основном (последовательном) и параллельном соединении элементов
- •2.3.5. Расчет надежности сложных инфокоммуникационных систем
- •Структура и функции стс
- •Определение надежностных характеристик блоков стс
- •Составление структурно-логической схемы надежности и графа состояний
- •2.3.5.4. Расчет коэффициента готовности стс
- •Определение надежностных характеристик блоков аиис
- •Составление структурно-логической схемы надежности и графа переходов
- •Расчет коэффициента готовности аиис «Алтайэнерго»
- •Расчет коэффициента готовности аиис
- •2.4. Расчет надежности восстанавливаемых систем при наличии системы контроля
- •2.4.1. Система встроенного контроля абсолютно надежна
- •2.4.2. Система встроенного контроля самопроверяемая, и ее отказ обнаруживается сразу же
- •2.4.3. Система встроенного самоконтроля несамопроверяемая
- •2.5. Расчет надежности в условиях нечетко заданных исходных данных
- •2.5.1. Выбор оптимального варианта для невосстанавливаемых систем
- •2.5.2. Выбор оптимального варианта для восстанавливаемых систем
- •2.6. Расчет надежности систем на этапе эксплуатации
- •2.6.1. Планирование и расчет периодов профилактик
- •2.6.2. Планирование и расчет числа запасных изделий
- •Вопросы и задания
- •Список литературы
- •3. Создание надежного программного обеспечения
- •3.1. Надежность программного обеспечения
- •3.1.1. Ошибки в по и их типы
- •Типы ошибок в программном обеспечении
- •3.1.2. Причины появления ошибок в программном обеспечении
- •3.1.3. Отношения с пользователем (заказчиком)
- •3.1.4. Принципы и методы обеспечения надежности
- •3.1.5. Последовательность выполнения процессов разработки программного обеспечения
- •3.1.6. Сравнение надежности аппаратуры и программного обеспечения
- •3.2. Основные этапы проектирования программного обеспечения
- •3.2.1. Правильность проектирования и планирование изменений
- •3.2.2. Требования к по
- •3.2.3. Цели программного обеспечения
- •Цели продукта
- •Цели проекта
- •Общие правила постановки целей
- •Оценка целей
- •3.2.4. Внешнее проектирование
- •Проектирование взаимодействия с пользователем
- •Подготовка внешних спецификаций
- •Проверка правильности внешних спецификаций
- •3.2.5. Проектирование архитектуры программы
- •Независимость модулей
- •Прочность модулей
- •Сцепление модулей
- •3.2.6. Методы непосредственного повышения надежности модулей
- •Пассивное обнаружение ошибок
- •Активное обнаружение ошибок
- •Исправление ошибок и устойчивость к ошибкам
- •Изоляция ошибок
- •Обработка сбоев аппаратуры
- •3.2.7. Проектирование и программирование модуля
- •Внешнее проектирование модуля
- •Проектирование логики модуля
- •Пошаговая детализация
- •3.2.8. Стиль программирования
- •Ясность программирования
- •Использование языка
- •Микроэффективность
- •Комментарии
- •Определения данных
- •Структура модуля
- •3.3. Тестирование и верификация программ
- •3.3.1. Проблемы тестирования программ
- •3.3.2. Технологии тестирования программ
- •3.3.3. Принципы тестирования
- •3.4. Модели надежности по
- •3.4.1. Модель роста надежности
- •3.4.2. Другие вероятностные модели
- •3.4.3. Статистическая модель Миллса
- •3.4.4. Простые интуитивные модели
- •3.4.5. Объединение показателей надежности
- •Вопросы и задания
- •Список литературы
- •4. Диагностика состояния сложных технических систем
- •4.1. Предмет, задачи и модели технической диагностики
- •4.1.1. Предмет технической диагностики
- •4.1.2. Основные аспекты, задачи и модели технической диагностики
- •4.1.3. Классификация диагностических процедур и их краткая характеристика
- •4.2. Построение тестов
- •4.2.1. Построение тестового набора методом активизации существенного пути
- •4.2.2. Алгоритм построения тестового набора для комбинационной схемы методом активизации существенного пути
- •4.2.3. Построение тестов для схем с памятью
- •Комбинационная модель последовательностной схемы
- •Построение тестовой последовательности по комбинационной модели последовательностной схемы
- •4.3. Функциональный контроль и диагностирование сложных технических систем
- •4.3.1. Полностью самопроверяемые цифровые устройства
- •4.3.2. Схемы встроенного контроля
- •4.3.3. Схемы сжатия
- •4.3.4. Микропроцессор как объект функционального контроля
- •4.3.5. Модель мп с точки зрения функционального контроля
- •4.3.6. Диагностическая модель уу мп системы
- •4.3.7. Критерии оценки методов контроля механизмов выборки, хранения и дешифрации команд
- •4.3.8. Встроенный функциональный контроль механизмов хранения и дешифрации команд
- •Методы пошагового контроля правильности хода программ
- •Методы контроля, реализующие раскраску команд
- •Метод контроля, использующий раскраску без учета структуры команд
- •Преобразованная программа приведена ниже:
- •Цвет Четность Цвет гса
- •Метод контроля команд, реализующий раскраску с учетом структуры команды
- •Раскраска без внесения в команду избыточных разрядов
- •Методы контроля механизмов дешифрации и хранения команд с помощью веса перехода
- •Метод контроля с помощью алгебраических кодов
- •Методы блокового контроля правильности хода программ
- •Блоковый контроль программ по методу разбиения программы на фазы (блоки)
- •Блоковый контроль правильности хода программ с помощью сигнатур
- •Метод контроля программ на основе полиноминальной интерпретации схем алгоритмов (программ)
- •Сравнительный анализ свк, реализующих методы блокового и пошагового контроля
- •4.4. Экспертные системы диагностирования сложных технических систем
- •4.4.1. Обучение и его модели. Самообучение
- •4.4.2. Экспертные системы и принципы их построения
- •4.4.3. Проблема разделения в самообучаемых экспертных системах
- •4.4.4. Алгоритмы обучения экспертных систем
- •Частота события находится по следующей формуле:
- •4.4.5. Асу «интеллектуальным зданием»
- •4.4.6. Система, принимающая решения по максимальной вероятности
- •4.4.7. Система, принимающая решения по наименьшему расстоянию
- •4.4.8. Повышение достоверности решений экспертной системы
- •4.4.9. Прогнозирование технического состояния узлов
- •Вопросы и задания
- •Список литературы
- •Приложение Интенсивность отказов компонентов иус
- •Кон Ефим Львович, Кулагина Марина Михайловна надежность и диагностика компонентов инфокоммуникационных и информационно-управляющих систем
3.1.5. Последовательность выполнения процессов разработки программного обеспечения
Большинство процессов разработки программного обеспечения – это процессы решения некоторых задач. Внешнее проектирование сводится к решению такой задачи: переведите множество целей системы во внешние спецификации. В задаче проектирования логики модуля даны внешние спецификации модуля, а на выход должен быть получен текст его программы. Отладка – это задача на определение места ошибки и ее исправления по описанию ее симптомов. Полностью процесс проектирования ПО будет представлен на рис. 3.2.
Решение задачи состоит из следующего ряда шагов.
Формулировка задачи. Прежде всего, проектировщик должен детально разобраться, в чем именно состоит задача очередного процесса. Худшая из ошибок, которые могут быть сделаны при решении задачи, – не вполне разобраться в ее постановке. Исследуя задачу, проектировщик должен также исследовать данные, чтобы убедиться, что их достаточно для решения задачи и они не противоречат друг другу.
Составление плана решения. Отсутствие плана – очень распространенная ошибка. Например, проектировщики программной системы, которые потратили время на то, чтобы понять задачу, но затем немедленно приступили к ее решению, не пожелав затратить время на планирование своих усилий, в результате могут прийти к хорошему решению, но не раньше, чем после нескольких ненужных фальстартов.
Прежде всего, в плане нужно определить, чего вы хотите добиться. Десять человек могут иметь десять разных мнений относительно «правильного» ответа на задачу проектирования; проектировщик должен предусмотреть те конкретные аспекты решения, которые требуют наибольшего внимания. К сожалению, в большинстве проектов разработчики имеют слишком много свободы в этом отношении: каждый разработчик принимает компромиссные решения, основываясь на своем собственном мнении, что приводит к несогласованности многих решений в системе. Решением этой проблемы является идея целей проекта. Суть идеи состоит в том, что на уровне всего проекта определяются общие цели, которыми следует руководствоваться во всех решениях при проектировании.
Выполнение плана. Следующий шаг – действительно решить задачу в соответствии с запланированным подходом. Поскольку решение обычно состоит из целого ряда последовательных шагов, разработчик в процессе решения должен попытаться проверить правильность каждого шага.
Анализ решения. После того как результат получен, нужно еще его проверить. Разработчик должен просмотреть все данные, чтобы убедиться, что учтено все, что имеет отношение к делу. Полезно для этого еще раз перечитать буквально каждое слово постановки задачи, вычеркивая каждый использованный в решении факт, а затем проверить, насколько существенно для задачи то, что осталось не зачеркнутым. Разработчик должен также проверить правильность решения задачи.
3.1.6. Сравнение надежности аппаратуры и программного обеспечения
Для лучшего понимания надежности программного обеспечения стоит сравнить ее с надежностью аппаратуры (подразд. 2.1.3). Возможны три причины отказа аппаратуры некоторого устройства: ошибка проектирования, производственный дефект и износ. Изменение интенсивности отказов аппаратуры (λ) в процессе эксплуатации графически можно представить соответствующей кривой на рис. 3.1.
Надежность программного обеспечения существенно отличается от надежности аппаратуры. Программы не изнашиваются, поломка программы невозможна. Более того, производственные дефекты (такие, как копирование системы для переноса ее на другой компьютер) не имеют особого значения, так как они сравнительно редки и быстро обнаруживаются. Таким образом, ненадежность программного обеспечения системы – следствие исключительно ошибок проектирования, т.е. ошибок, внесенных в процессе разработки. В условиях, когда ошибки исправляются тотчас же, как только они обнаруживаются, изменение интенсивности отказов программного обеспечения соответствует кривой «программного обеспечения» на рис. 3.1. Подчеркнем, что эта кривая отражает предположение, что при исправлении ошибок не вносятся новые. Это предположение обычно не справедливо.
Рис.
3.1. Различие между надежностью аппаратуры
и программного обеcпечения
Сравнение кривых (см. рис. 3.1) показывает, что интенсивность отказов программного обеспечения и интенсивность отказов аппаратуры изменяются по-разному. Надежность аппаратуры определяется случайными отказами, надежность программного обеспечения – скрытыми в нем ошибками, природа которых не является случайной.