
- •Е.Л. Кон, м.М. Кулагина надежность и диагностика компонентов инфокоммуникационных и информационно-управляющих систем
- •Оглавление
- •1. Основные теоретические сведения 9
- •2. Надежность аппаратурного обеспечения 31
- •3. Создание надежного программного обеспечения 130
- •4. Диагностика состояния сложных технических систем 205
- •Введение
- •1. Основные теоретические сведения
- •1.1. Информационно-управляющие и инфокоммуникационные системы
- •1.2. Основные определения теории надежности
- •1.2.1. Надежность и ее частные стороны
- •1.2.2. Виды надежности
- •1.2.3. Отказы
- •1.2.4. Эффективность
- •1.2.5. Восстановление
- •1.3. Понятие случайных событий и случайных величин
- •1.3.1. Надежность систем при основном (последовательном) и параллельном соединении элементов
- •1.3.2. Основное соединение элементов
- •1.3.3. Параллельное соединение элементов
- •1.4. Элементы теории нечетких множеств
- •1.4.1. Понятие принадлежности и основные операции для четких подмножеств
- •1.4.2. Понятие принадлежности и основные операции для нечетких подмножеств
- •1.4.3. Отношение доминирования
- •1.4.4. Простейшие операции над нечеткими множествами
- •1.4.5. Расстояние Хэмминга
- •Вопросы и задания
- •Список литературы
- •2. Надежность аппаратурного обеспечения
- •2.1. Надежность невосстанавливаемых систем без резервирования
- •2.1.1. Показатели надежности невосстанавливаемых объектов
- •2.1.2. Законы распределения случайных величин, используемые в теории надежности
- •Показательное (экспоненциальное) распределение
- •Усеченное нормальное распределение
- •Распределение Вейбулла
- •Гамма-распределение
- •Практическая область применения законов распределения времени безотказной работы
- •2.1.3. Использованиеи-характеристик для решения практических задач
- •2.1.4. Особенности расчета надежности при проектировании различных систем
- •2.1.5. Расчет надежности по блок-схеме системы
- •2.1.6. Расчет надежности при подборе элементов системы
- •2.1.7. Расчет надежности системы с учетом режимов работы элементов
- •2.1.8. Учет цикличности работы аппаратуры
- •2.2. Надежность невосстанавливаемых систем с резервированием
- •2.2.1. Пути повышения надежности
- •2.2.2. Методы резервирования
- •2.2.3. Расчет надежности сложных систем при постоянно включенном резерве
- •2.2.4. Расчет надежности системы при резервировании замещением
- •2.2.5. Резервирование замещением в случае нагруженного резерва
- •2.2.6. Резервирование замещением в случае облегченного резерва
- •2.2.7. Резервирование замещением в случае ненагруженного резерва
- •2.2.8. Расчет надежности систем с функциональным резервированием
- •2.3. Расчет надежности восстанавливаемых систем
- •2.3.1. Критерий надежности систем с восстановлением
- •Характеристики потока отказов
- •Характеристики потока восстановления
- •Комплексные характеристики надежности систем с восстановлением
- •2.3.2. Расчет надежности по графу работоспособности объекта
- •2.3.3. Определение среднего времени наработки на отказ системы с восстановлением
- •2.3.4. Расчет надежности систем с восстановлением при основном (последовательном) и параллельном соединении элементов
- •2.3.5. Расчет надежности сложных инфокоммуникационных систем
- •Структура и функции стс
- •Определение надежностных характеристик блоков стс
- •Составление структурно-логической схемы надежности и графа состояний
- •2.3.5.4. Расчет коэффициента готовности стс
- •Определение надежностных характеристик блоков аиис
- •Составление структурно-логической схемы надежности и графа переходов
- •Расчет коэффициента готовности аиис «Алтайэнерго»
- •Расчет коэффициента готовности аиис
- •2.4. Расчет надежности восстанавливаемых систем при наличии системы контроля
- •2.4.1. Система встроенного контроля абсолютно надежна
- •2.4.2. Система встроенного контроля самопроверяемая, и ее отказ обнаруживается сразу же
- •2.4.3. Система встроенного самоконтроля несамопроверяемая
- •2.5. Расчет надежности в условиях нечетко заданных исходных данных
- •2.5.1. Выбор оптимального варианта для невосстанавливаемых систем
- •2.5.2. Выбор оптимального варианта для восстанавливаемых систем
- •2.6. Расчет надежности систем на этапе эксплуатации
- •2.6.1. Планирование и расчет периодов профилактик
- •2.6.2. Планирование и расчет числа запасных изделий
- •Вопросы и задания
- •Список литературы
- •3. Создание надежного программного обеспечения
- •3.1. Надежность программного обеспечения
- •3.1.1. Ошибки в по и их типы
- •Типы ошибок в программном обеспечении
- •3.1.2. Причины появления ошибок в программном обеспечении
- •3.1.3. Отношения с пользователем (заказчиком)
- •3.1.4. Принципы и методы обеспечения надежности
- •3.1.5. Последовательность выполнения процессов разработки программного обеспечения
- •3.1.6. Сравнение надежности аппаратуры и программного обеспечения
- •3.2. Основные этапы проектирования программного обеспечения
- •3.2.1. Правильность проектирования и планирование изменений
- •3.2.2. Требования к по
- •3.2.3. Цели программного обеспечения
- •Цели продукта
- •Цели проекта
- •Общие правила постановки целей
- •Оценка целей
- •3.2.4. Внешнее проектирование
- •Проектирование взаимодействия с пользователем
- •Подготовка внешних спецификаций
- •Проверка правильности внешних спецификаций
- •3.2.5. Проектирование архитектуры программы
- •Независимость модулей
- •Прочность модулей
- •Сцепление модулей
- •3.2.6. Методы непосредственного повышения надежности модулей
- •Пассивное обнаружение ошибок
- •Активное обнаружение ошибок
- •Исправление ошибок и устойчивость к ошибкам
- •Изоляция ошибок
- •Обработка сбоев аппаратуры
- •3.2.7. Проектирование и программирование модуля
- •Внешнее проектирование модуля
- •Проектирование логики модуля
- •Пошаговая детализация
- •3.2.8. Стиль программирования
- •Ясность программирования
- •Использование языка
- •Микроэффективность
- •Комментарии
- •Определения данных
- •Структура модуля
- •3.3. Тестирование и верификация программ
- •3.3.1. Проблемы тестирования программ
- •3.3.2. Технологии тестирования программ
- •3.3.3. Принципы тестирования
- •3.4. Модели надежности по
- •3.4.1. Модель роста надежности
- •3.4.2. Другие вероятностные модели
- •3.4.3. Статистическая модель Миллса
- •3.4.4. Простые интуитивные модели
- •3.4.5. Объединение показателей надежности
- •Вопросы и задания
- •Список литературы
- •4. Диагностика состояния сложных технических систем
- •4.1. Предмет, задачи и модели технической диагностики
- •4.1.1. Предмет технической диагностики
- •4.1.2. Основные аспекты, задачи и модели технической диагностики
- •4.1.3. Классификация диагностических процедур и их краткая характеристика
- •4.2. Построение тестов
- •4.2.1. Построение тестового набора методом активизации существенного пути
- •4.2.2. Алгоритм построения тестового набора для комбинационной схемы методом активизации существенного пути
- •4.2.3. Построение тестов для схем с памятью
- •Комбинационная модель последовательностной схемы
- •Построение тестовой последовательности по комбинационной модели последовательностной схемы
- •4.3. Функциональный контроль и диагностирование сложных технических систем
- •4.3.1. Полностью самопроверяемые цифровые устройства
- •4.3.2. Схемы встроенного контроля
- •4.3.3. Схемы сжатия
- •4.3.4. Микропроцессор как объект функционального контроля
- •4.3.5. Модель мп с точки зрения функционального контроля
- •4.3.6. Диагностическая модель уу мп системы
- •4.3.7. Критерии оценки методов контроля механизмов выборки, хранения и дешифрации команд
- •4.3.8. Встроенный функциональный контроль механизмов хранения и дешифрации команд
- •Методы пошагового контроля правильности хода программ
- •Методы контроля, реализующие раскраску команд
- •Метод контроля, использующий раскраску без учета структуры команд
- •Преобразованная программа приведена ниже:
- •Цвет Четность Цвет гса
- •Метод контроля команд, реализующий раскраску с учетом структуры команды
- •Раскраска без внесения в команду избыточных разрядов
- •Методы контроля механизмов дешифрации и хранения команд с помощью веса перехода
- •Метод контроля с помощью алгебраических кодов
- •Методы блокового контроля правильности хода программ
- •Блоковый контроль программ по методу разбиения программы на фазы (блоки)
- •Блоковый контроль правильности хода программ с помощью сигнатур
- •Метод контроля программ на основе полиноминальной интерпретации схем алгоритмов (программ)
- •Сравнительный анализ свк, реализующих методы блокового и пошагового контроля
- •4.4. Экспертные системы диагностирования сложных технических систем
- •4.4.1. Обучение и его модели. Самообучение
- •4.4.2. Экспертные системы и принципы их построения
- •4.4.3. Проблема разделения в самообучаемых экспертных системах
- •4.4.4. Алгоритмы обучения экспертных систем
- •Частота события находится по следующей формуле:
- •4.4.5. Асу «интеллектуальным зданием»
- •4.4.6. Система, принимающая решения по максимальной вероятности
- •4.4.7. Система, принимающая решения по наименьшему расстоянию
- •4.4.8. Повышение достоверности решений экспертной системы
- •4.4.9. Прогнозирование технического состояния узлов
- •Вопросы и задания
- •Список литературы
- •Приложение Интенсивность отказов компонентов иус
- •Кон Ефим Львович, Кулагина Марина Михайловна надежность и диагностика компонентов инфокоммуникационных и информационно-управляющих систем
2.2.4. Расчет надежности системы при резервировании замещением
Если по условиям выполняемого задания работу системы можно прерывать для замены отказавшего элемента резервным, то обычно применяют резервирование замещением отказавшего элемента. Особенность этого резервирования состоит в том, что резервный элемент включается в работу только после отказа основного, а до этого он содержится в резерве и непосредственно в работе не участвует.
Чтобы резервный элемент в момент его включения в работу был подготовлен к выполнению этой работы, иногда его приходится содержать в резерве в некотором нагруженном режиме. В общем случае резервный элемент до его включения в работу может содержаться в резерве в одном из следующих состояний:
– в том же самом рабочем режиме, что и работающий основной (нагруженный резерв);
– в облегченном рабочем режиме (облегченный резерв);
– в ненагруженном режиме (ненагруженный резерв).
Рассмотрим сначала случай резервирования замещением одного основного элемента 0 одним дублирующим 1, который переключающим устройством П1 включается в работу в момент отказа основного (рис. 2.17).
Рис.
2.17. Резервированная группа Рис. 2.18.
Функция плотности распределения
резервированной группы
Пусть график плотности распределения времени безотказной работы основного элемента 0 имеет такой вид резервированной группы, где отрезок времени t разделен на n частичных отрезков ti ti – ti–1, i = 1, 2, …, n (рис. 2.18).
Тогда рассматриваемая резервированная группа (см. рис. 2.17) к моменту времени t не откажет лишь в случаях, когда:
1) либо основной элемент 0 к моменту t не откажет;
2) либо основной
элемент 0 откажет к моменту
,
гдеti–1
<
<ti
< t,
i
= 1, 2, …, n,
но резервный элемент 1, будучи исправным
к времени
<t,
не откажет на отрезке времени t
–
.
Принимая отказы основного элемента 0 на отрезках времени ti ti – – ti–1, i = 1, 2, …, n за гипотезы, по формуле полной вероятности получаем:
(2.52)
где Р1(t)
– надежность рассматриваемой
резервированной группы (см. рис. 2.17);
Р0(t)
– надежность основного элемента 0;
– вероятность гипотезы отказа основного
элемента 0 на отрезке времениti;
– вероятность безотказной работы
резервного элемента 1 к моментуt
при условии, что основной элемент отказал
в момент
.
Переходя в формуле к пределу max t 0, получим точное выражение для надежности Р1(t) рассматриваемой резервированной группы:
(2.53)
Формула, естественно, обобщается на случай k-кратного резервирования замещением, т.е. такого резервирования, когда в момент отказа основного элемента 0 переключающее устройство П1 включает в работу 1-й резервный элемент, в момент отказа 1-го резервного элемента переключающее устройство П2 включает 2-й резервный элемент и т.д. до включения в работу последнего k-кратного резервного элемента. Такую группу элементов k-кратного резервирования можно рассматривать как группу элементов, составленную из группы (k – 1)-кратного резервирования и одного дополнительного k-го резервного элемента (рис. 2.19). При таком рассмотрении формула для k-кратно резервированной группы примет вид
(2.54)
где
– надежность рассматриваемой группыk-кратного
резервирования;
– надежность группы (k–1)-кратного
резервирования;
– вероятность безотказной работыk-го
резервного элемента к моменту времени
t
при условии, что группа (k–1)-кратного
резервирования отказала в момент ;
– плотность распределения времени
безотказной работы группы (k–1)-кратного
резервирования.
Рис. 2.19. k-кратное резервирование
Если обозначить
через
– вероятность того, чтоk-й
резервный элемент откажет к моменту t
при условии, что группа (k–1)-кратного
резервирования отказала в момент ,
т.е. если
(2.55)
то формулу можно переписать так:
(2.56)
Но
и
,
(2.57)
где
– надежность (k–1)-кратно
резервированной группы. Поэтому
(2.58)
откуда окончательно получим:
(2.59)
Эти формулы и являются основными формулами расчета надежности системы при резервировании замещением.
При выводе этих формул мы допускали, что переключающие устройства П1, П2, …, Пk действуют безотказно. Однако надежность этих переключающих устройств легче учесть, рассматривая их как самостоятельные элементы, включенные последовательно с соответствующими резервными элементами группы.
В следующих трех подразделах рассмотрим частные случаи резервирования замещением: нагруженный, облегченный и ненагруженный резервы.