
- •Содержание
- •Введение
- •Тематический план
- •Планы практических занятий
- •Занятие 7. Тема 4. Обобщающие статистические показатели
- •Общие положения, методический инструментарий и задания на практические занятия по темам
- •Тема 1. Методические основы статистики (2 ч.)
- •Основные положения темы
- •Вопросы и задания для самоконтроля
- •Перечень вопросов для тестового контроля
- •Тема 2. Статистическое наблюдение (2 ч.) Основные положения темы
- •Иллюстративный материал темы к вопросу: формы, виды и способы наблюдения
- •Организационные формы
- •Практические задания для самоконтроля
- •Перечень вопросов для тестового контроля
- •Тема 3. Сводка и группировка статистических данных (4 ч.) Основные положения темы
- •Методический материал и примеры решения типовых задач к вопросу: сущность и классификация статистических группировок
- •Пример группировки данных
- •Выполнение задания
- •Вопросы и задания для самоконтроля
- •Практические задания для самоконтроля
- •Перечень вопросов для тестового контроля
- •Тема 4. Обобщающие статистические показатели (10 ч.) Основные положения темы
- •Иллюстративно-методический материал и примеры решения типовых задач к вопросу: абсолютные величины Пример расчета условно-натуральных величин
- •К вопросу: относительные величины
- •Пример расчета относительных величин динамики
- •Пример расчета относительных величин планового задания
- •Пример расчета относительных величин выполнения планового задания
- •Пример расчета показателей, основанного на взаимосвязи относительных величин динамики, планового задания и выполнения плана
- •Пример расчета относительной величины структуры
- •Пример расчета относительной величины координации
- •Пример расчета относительной величины сравнения
- •К вопросу: средние величины
- •Пример расчета средних величин по не сгруппированным и сгруппированным данным
- •Пример расчета средней гармонической простой
- •Пример расчета средней гармонической взвешенной
- •Примеры расчета средней геометрической простой
- •Пример расчета средней квадратической
- •Пример применения правила выбора формы средней величины качественного признака
- •Вопросы и задания для самоконтроля
- •Практические задания для самоконтроля
- •Перечень вопросов для тестового контроля
- •Тема 5. Анализ рядов распределения (10 ч.) Основные положения темы
- •Иллюстративно-методический материал и примеры решения типовых задач к вопросу: понятие рядов распределения
- •Пример расчета средней арифметической взвешенной величины методом моментов
- •К вопросу: мода и медиана
- •Пример расчета медианы
- •Пример расчета моды
- •К вопросу: показатели вариации
- •Пример расчета показателей вариации
- •Пример расчета дисперсии методом моментов
- •Пример расчета дисперсии методом разности
- •К вопросу: виды дисперсии. Правило сложения дисперсии. Понятие эмпирического коэффициента детерминации и эмпирического корреляционного отношения
- •Пример расчета общей, межгрупповой и внутригрупповой дисперсии, эмпирического коэффициента детерминации и эмпирического корреляционного отношения
- •Вопросы и задания для самоконтроля
- •Практические задания для самоконтроля
- •Перечень вопросов для тестового контроля
- •Тема 6. Анализ концентрации, дифференциации
- •Основные положения темы
- •Иллюстративно-методический материал и примеры решения типовых задач к вопросу: показатели дифференциации распределения
- •Пример расчета квартилей
- •Пример расчета децилей
- •Пример расчета квартильного и децильного коэффициентов
- •К вопросу: показатели концентрации распределения
- •Пример расчета коэффициента концентрации Джини
- •Пример расчета коэффициентов концентрации Герфиндаля и Розенблюта
- •К вопросу: понятие о закономерностях распределения
- •Пример расчета критериев согласия
- •К вопросу: показатели формы распределения
- •Пример расчета показателей формы распределения
- •Вопросы и задания для самоконтроля
- •Практические задания для самоконтроля
- •Перечень вопросов для тестового контроля
- •Тема 7. Статистические методы измерения взаимосвязей (8 ч.) Основные положения темы
- •Иллюстративно-методический материал и примеры решения типовых задач к вопросу: метод сравнения параллельных рядов
- •Пример оценки характера связи между показателями параллельного ряда с помощью коэффициента Фехнера
- •Пример оценки характера связи между показателями параллельного ряда с помощью коэффициента корреляции рангов Спирмена
- •Пример оценки характера связи между показателями параллельного ряда с помощью коэффициента корреляции рангов Спирмена в случае совпадения их значений
- •К вопросу: метод аналитической группировки. Понятие таблиц взаимной сопряженности
- •Пример расчета эмпирического корреляционного отношения
- •Пример оценки степени надежности эмпирического корреляционного отношения с помощью критериев Фишера и Стьюдента
- •К вопросу: показатели тесноты связи между двумя атрибутивными признаками
- •Пример расчета показателей тесноты связи между атрибутивными признаками
- •Пример расчета коэффициента взаимной сопряженности Чупрова
- •К вопросу: понятие корреляционно-регрессионного анализа
- •К вопросу: парная линейная регрессия
- •Пример построения уравнения парной линейной регрессии
- •Пример расчета коэффициентов эластичности
- •Пример расчета индекса корреляции (теоретического корреляционного отношения), коэффициента детерминации, линейного коэффициента корреляции и критериев Фишера и Стьюдента
- •К вопросу: понятие многофакторного корреляционно-регрессионного анализа
- •Вопросы и задания для самоконтроля
- •Практические задания для самоконтроля
- •Перечень вопросов для тестового контроля
- •Тема 8. Анализ интенсивности динамики (4 ч.) Основные положения темы
- •Иллюстративно-методический материал и примеры решения типовых задач к вопросу: общая характеристика рядов динамики
- •Пример смыкания рядов динамики данных, отличающихся друг от друга по числу включаемых в исследуемую совокупность единиц
- •Пример смыкания рядов динамики данных, отличающихся друг от друга методикой расчета показателей
- •К вопросу: статистические характеристики рядов динамики
- •Пример расчета показателей интенсивности динамики
- •Пример расчета среднего уровня полного интервального ряда динамики
- •Пример расчета среднего уровня неполного интервального ряда динамики
- •Пример расчета среднего уровня полного моментного ряда динамики
- •Пример расчета среднего уровня неполного моментного ряда динамики
- •Пример расчета средних показателей интенсивности динамики
- •К вопросу: сравнительный анализ рядов динамики
- •Пример сравнительного анализа рядов динамики
- •Вопросы и задания для самоконтроля
- •Практические задания для самоконтроля
- •Перечень вопросов для тестового контроля
- •Тема 9. Анализ тенденции развития и колебаний (6 ч.) Основные положения темы
- •Иллюстративно-методический материал и примеры решения типовых задач к вопросу: структура ряда динамики
- •К вопросу: изучение основной тенденции развития
- •Этапы изучения основной тенденции развития
- •1. Ряд динамики проверяется на наличие тренда
- •2. Производится выравнивание временного ряда
- •Пример проверки ряда динамики на наличие тренда
- •Пример проверки ряда динамики на наличие тренда с помощью метода серий
- •К вопросу: механическое выравнивание рядов динамики Пример механического выравнивания ряда динамики методом укрупненных интервалов
- •Пример механического выравнивания ряда динамики методом скользящей средней
- •К вопросу: аналитическое выравнивание рядов динамики
- •Пример аналитического выравнивания ряда динамики
- •К вопросу: характеристика колеблемости
- •К вопросу: сезонные колебания
- •Пример расчета индексов сезонности при условии отсутствия четко выраженной тенденции изменения уровней ряда динамики
- •Пример расчета индексов сезонности при условии наличия тренда
- •Вопросы и задания для самоконтроля
- •Практические задания для самоконтроля
- •Перечень вопросов для тестового контроля
- •Тема 10. Индексный метод (8 ч.) Основные положения темы
- •Иллюстративно-методический материал и примеры решения типовых задач к вопросу: общая характеристика статистических индексов
- •К вопросу: агрегатный индекс как основная форма общего индекса
- •Пример расчета индивидуальных и агрегатных индексов
- •К вопросу: общие индексы как средние из индивидуальных индексов
- •Пример расчета общих индексов как средних из индивидуальных индексов
- •10.4 Системы взаимосвязанных индексов
- •Пример взаимосвязи индексов и расчета величины абсолютного прироста результативного признака за счет изменения признаков-факторов
- •К вопросу: индексы с постоянной и переменной базой сравнения
- •Пример расчета цепных и базисных индексов физического объема, цен и товарооборота
- •К вопросу: индексы средних величин
- •Пример анализа относительного и абсолютного изменения средних значений качественного признака, в том числе за счет изменения соответствующих факторов
- •К вопросу: территориальные индексы
- •Пример расчета территориальных индексов
- •Вопросы и задания для самоконтроля
- •Практические задания для самоконтроля
- •Перечень вопросов для тестового контроля
- •Тема 11. Выборочный метод (4 ч.) Основные положения темы
- •Индивидуальный
- •К вопросу: ошибки выборки
- •Пример расчета ошибок репрезентативности показателей выборки
- •Пример расчета средних ошибок выборки
- •Пример расчета предельных ошибок выборки и доверительных интервалов для характеристик генеральной совокупности
- •К вопросу: определение численности выборки
- •Пример расчета численности выборки, обеспечивающей заданную точность результатов исследования, формируемой посредством случайного бесповторного отбора
- •Пример расчета численности стратифицированной выборки, а также границ, в которых находится среднее значение признака единицы генеральной совокупности
- •Вопросы и задания для самоконтроля
- •Практические задания для самоконтроля
- •Перечень вопросов для тестового контроля
- •Тема 12. Представление статистических данных:
- •Основные положения темы
- •Иллюстративный материал темы к вопросу: статистические таблицы
- •К вопросу: классификация статистических графиков
- •Вопросы и задания для самоконтроля
- •Перечень вопросов для тестового контроля
- •Список рекомендуемой литературы
- •98309 Г. Керчь, Орджоникидзе, 82
К вопросу: показатели вариации
Размаха вариации (R) рассчитывается по формуле
,
(5.5)
где Хmax и Хmin – соответственно максимальное и минимальное значения признака в исследуемой совокупности.
Среднее
линейное отклонение (
)
по не сгруппированным данным рассчитывается
по формуле
.
(5.6)
Среднее линейное отклонение ( ) по сгруппированным данным рассчитывается по формуле
.
(5.7)
Дисперсия (σ2) по не сгруппированным данным рассчитывается по формуле
.
(5.8)
Дисперсия (σ2) по сгруппированным данным рассчитывается по формуле
.
(5.9)
Среднее квадратическое отклонение (σ) рассчитывается по формуле
.
(5.10)
Коэффициент вариации (V) рассчитывается по формуле
.
(5.11)
Следует помнить, что оценка степени интенсивности вариации возможна только для каждого отдельного признака и совокупности определенного состава. Так, для совокупности сельхозпредприятий вариация урожайности в одном и том же природном регионе может быть оценена как слабая, если V < 10 %, умеренная при 10 % < V <25 % и сильная при V > 25 %. Напротив, вариация роста в совокупности взрослых мужчин или женщин уже при коэффициенте, равном 7 %, должна быть оценена и восприниматься людьми как сильная. Таким образом, оценка интенсивности вариации состоит в сравнении наблюдаемой вариации с некоторой обычной ее интенсивностью, принимаемой за норматив. Если различия в урожайности, заработной плате или доходе на душу населения в несколько и даже в десятки раз воспринимаются как вполне естественные, то различия роста людей хотя бы в полтора раза уже воспринимаются как очень сильные.
Пример расчета показателей вариации
По данным таблицы 5.5 необходимо охарактеризовать ряд распределения работников предприятия по заработной плате на предмет его однородности и типичности среднего значения уровня заработной платы для работников предприятия.
По формуле 5.5 размах вариации R = 2000 – 800 = 1200 грн., т.е. разница между максимальным и минимальным уровнем оплаты труда на предприятии составляет приблизительно 1200 грн. На первый взгляд это достаточно большой разброс в оплате труда работников предприятия, т. е. исследуемая совокупность не однородна по оплате труда. Данное предположение подтвердится или нет последующими расчетами. Отметим, что верхнюю границу последнего открытого интервала определили исходя их величины смежного с ним интервала, которая равна 200 грн. (1800 - 1600), 1800 + 200 = 2000 грн.
Расчет среднего линейного отклонения проведем с помощью данных таблицы 5.9. Напомним, что средняя заработная плата работников предприятия, исчисленная по формулам 4.21 и 5.1 равна 1340 грн.
Таблица 5.9 - Данные для расчета среднего линейного отклонения
заработной платы работников предприятия
Группы работников по уровню заработной платы, грн. |
Число работников, чел. (fi) |
Середина интервала, грн. (xi) |
= | xi - 1340| |
|
800 -1000 1000 -1200 1200 - 1400 1400 - 1600 1600 - 1800 1800 и выше |
20 80 160 90 40 10 |
900 1100 1300 1500 1700 1900 |
440 240 40 160 360 560 |
8800 19200 6400 14400 14400 5600 |
Всего |
400 |
- |
- |
68800 |
По
формуле 5.7 среднее линейное отклонение
грн.
Расчет дисперсии (среднего квадрата отклонений) проведем с помощью данных таблицы 5.10.
Таблица 5.10 - Данные для расчета среднего квадрата отклонений
заработной платы работников предприятия
Группы работников по уровню заработной платы, грн. |
Число работников, чел. (fi) |
Середина интервала, грн. (xi) |
|
|
800 -1000 1000 -1200 1200 - 1400 1400 - 1600 1600 - 1800 1800 и выше |
20 80 160 90 40 10 |
900 1100 1300 1500 1700 1900 |
193600 57600 1600 25600 129600 313600 |
3872000 4608000 256000 2304000 5184000 3136000 |
Всего |
400 |
- |
- |
19360000 |
По
формуле 5.9 дисперсия
.
По
формуле 5.10 среднее квадратическое
отклонение
грн.
На основании полученных показателей вариации пока еще трудно оценить однородность работников предприятия по уровню их заработной платы.
По
формуле 5.11 коэффициент вариации
,
что говорит о достаточной однородности
исследуемой совокупности по уровню
зарплаты и типичности ее среднего
уровня.
Математические свойства дисперсии, упрощающие технику ее расчета:
1) если от всех вариант ряда распределения отнять какое-то постоянное число А, то дисперсия от этого не изменится.
2) если все значения вариант разделить на какое-то постоянное число h, то дисперсия уменьшится от этого в h2 раз, а среднее квадратическое отклонение – в h раз.
Эти свойства положены в основу расчета дисперсии способом моментов. Способ моментов применим в том случае, если задан интервальный ряд с равными интервалами.
Дисперсия методом моментов рассчитывается по формуле
,
(5.12)
где h – шаг интервала;
m´, m´´- соответственно моменты первого и второго порядка. Напомним, что момент первого порядка рассчитывается по формуле 5.2. Момент второго порядка рассчитывается по формуле
.
(5.13)