Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биохимия уч. пособие.doc
Скачиваний:
192
Добавлен:
31.08.2019
Размер:
5.91 Mб
Скачать

4.1. Концентрация реагирующих веществ (доступность субстратов) как фактор регуляции обменных процессов

Концентрация субстрата (исходного участника реакции) может влиять на скорость реакции непосредственно или путем воздействия на активность ферментов. Оказывать влияние на активность ферментов субстрат может только при достаточной его концентрации, когда фермент «насыщен» субстратом. При низкой концентрации субстрата, когда фермент не насыщен субстратом (молекул субстрата меньше, чем молекул фермента), в качестве главного фактора, регулирующего скорость реакции, выступает концентрация субстрата. В обычных условиях жизнедеятельности организма большинство ферментов не проявляют своей наивысшей активности из-за недостаточного количества соответствующих субстратов. Введение в организм дополнительных количеств промежуточных продуктов обмена может ускорить протекание соответствующих химических процессов. Такого эффекта можно достичь при приеме промежуточных продуктов цикла трикарбоновых кислот (цитрата, сукцината, фумарата), свободных аминокислот.

Регулирующее влияние на скорость обменных процессов может осуществляться на этапе поступления субстрата в клетку путем воздействия на проницаемость клеточной оболочки. В качестве регулятора проницаемости клеточных мембран часто выступают гормоны. Так, например, гормон инсулин, повышая проницаемость оболочек клеток ряда органов и тканей для глюкозы, стимулирует синтез в них гликогена.

4.2. Ферменты – биологические катализаторы

Ферментами (энзимами) называют катализаторы, действующие в живых организмах и имеющие белковую природу. Как и любые катализаторы, ферменты способны ускорять только те реакции, которые могут происходить и без их участия, только со значительно меньшей скоростью. Сами ферменты по окончании реакции возвращаются в исходное состояние.

В организме человека имеется огромное количество разнообразных ферментов. В каждой клетке может содержаться до 1000 и более разнообразных видов ферментов. По-существу, ни одна реакция в организме не идет без участия ферментов.

Ферменты обладают очень высокой активностью. Некоторые ферменты способны ускорять реакции в сотни и даже тысячи раз. Под влиянием различных воздействий активность ферментов может меняться в очень широком диапазоне. Благодаря этому обеспечивается тонкая регуляция обменных процессов.

4.2.1. Строение ферментов

Практически все ферменты являются глобулярными белками, что подчеркивает высокую значимость пространственной структуры молекулы фермента для проявления каталитических свойств.

По химическому строению различают ферменты – простые белки и ферменты – сложные белки. К простым белкам, состоящим только из полипептидных цепей, относятся ферменты, катализирующие реакции гидролиза: пепсин, трипсин, фосфатазы, рибонуклеазы и др.

Ферменты – сложные белки, кроме белковой части, называемой апоферментом, содержат небелковые компоненты различной химической природы. Если такой компонент прочно связан с белковой частью, его называют простетической группой. Если небелковая часть легко отделяется от белковой, то ее называют коферментом. Коферментами, или их составными частями часто являются витамины: В1, В2, В5, Е, Q и др. Высокая значимость витаминов для обеспечения жизнедеятельности в первую очередь связана с их ролью как компонента небелковой части ферментов, осуществляющих обмен веществ и энергии в организме.

Коферменты и простетические группы, как правило, выполняют роль активных центров, непосредственно осуществляющих каталитические функции. Белковая часть обеспечивает специфичность действия фермента и отвечает за активность фермента. У ферментов - простых белков роль активных центров выполняет особое сочетание аминокислотных остатков, обеспечивающее взаимодействие с молекулой субстрата и принимающее непосредственное участие в каталитическом акте.

В активном центре фермента различают субстратный центр, обеспечивающий связывание субстрата и образование фермент-субстратного комплекса, и каталитический центр, на котором и происходят химические превращения субстрата.

Некоторые ферменты образуются в неактивной форме (в форме предшественников – проферментов). Их переход в активное состояние осуществляется под влиянием каких либо дополнительных факторов, или условий внутренней среды. Обычно это бывает связано с изменением пространственной конфигурации апофермента, или освобождением активного центра. Примером таких ферментов могут быть пепсин и трипсин – ферменты белкового пищеварения.

К особенностям ферментов можно отнести множественность их форм. Как правило, каждый фермент существует в нескольких модификациях (изоферментах), различающихся по физико-химическим свойствам. Важность существования изоферментов связана с тем, что свою наивысшую активность они могут проявлять в несколько разных условиях (при разных значениях рН, температуры и т.п.). Если изменяются условия, то начинает усиленно синтезироваться та модификация фермента, которая наиболее устойчива к этим условиям. Изоферменты – один из механизмов адаптации живых организмов к условиям существования. Так, систематическое выполнение на тренировочных занятиях интенсивной мышечной работы, вызывающей накопление молочной кислоты, достаточно сильно влияющей на активность ферментов, повышает устойчивость к ней ферментов, работающих в этих условиях. Причина этого кроется в усиленном синтезе более устойчивых к кислой среде модификаций ферментов.