Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биохимия уч. пособие.doc
Скачиваний:
192
Добавлен:
31.08.2019
Размер:
5.91 Mб
Скачать

3.10. Анаэробное окисление.

Существуют такие окислительные реакции, в которых конечным акцептором протонов и электронов (чаще всего временным) является не кислород, а какое либо другое вещество. В этом случае говорят об анаэробном биологическом окислении. Причиной включения процессов анаэробного окисления чаще всего является дефицит кислорода. Анаэробное окисление может происходить при напряженной мышечной деятельности, когда поставка к тканям кислорода неадекватна потребностям в нем. В этом случае вся система промежуточных переносчиков оказывается «забита» протонами и электронами и, чтобы процесс биологического окисления не прекращался, восстановленный НАД или НАДФ начинает передавать протоны и электроны веществам, которые могут их присоединить. Наиболее часто таким веществом оказывается пировиноградная кислота – промежуточный продукт распада углеводов, главного источника энергии при напряженной мышечной работе. Реакция протекает по уравнению, представленнгому на рис 11.

Пировиноградная кислота молочная кислота

Рис. 11. Восстановление пировиноградной кислоты в молочную в процессе анаэробного окисления

При напряженной мышечной деятельности в интенсивно работающих тканях, прежде всего в скелетных мышцах, могут образовываться значительные количества молочной кислоты.

Образовавшаяся в ходе анаэробного окисления молочная кислота при достаточном снабжении тканей кислородом может вновь отдавать протоны и электроны НАД с образованием НАД-Н2 и пировиноградной кислоты, дльнейшие превращения которых будет происходить по аэробному пути.

СН3-СНОН-СООН + НАД → СН3-СО-СООН + НАД-Н2

    1. Образование свободных радикалов.

Свободными радикалами (или оксидантами) называют атомы (или молекулы, в составе которых есть такие атомы), имеющие на внешнем электронном уровне неспаренные электроны. Такие атомы (молекулы) обладают высокой химической активностью. Они стремяться либо получить недостающие электроны, забрав их у других молекул, либо отдать свой лишний. Если оксидант забирает электрон у другой молекулы, та, превратившись в новый свободный радикал, забирает электрон у следующей молекулы и т. д. Начинается своеобразная «цепная реакция» последовательного окисления с образованием свободных радикалов.

Как правило, вся цепь образования свбодных радикалов начинается с кислорода. Молекулярный кислород содержит два неспаренных электрона с одинаково ориентированными спинами, занимающими внешние орбитали, каждая из которых может принять еще один электрон.

Потребляемый и доставляемый в ткани кислорода должен восстанавливается цитохромоксидазой митохондрий и используется в качестве акцептора водорода по уравнению:

О2 + 4е‾ + 4Н+ → 2Н2О

Конечным продуктом этой реакции является вода. Однако не все электроны доходят до завершающего этапа дыхательной цепи. Возможна их утечка с промежуточных переносчиков. Так коэнзим Q, действующий в середине дыхательной цепи, способен отдавать электрон не только своему естественному окислителю (цитохрому b), но и молекулярному кислороду, что приводит к образованию супероксида кислорода (О2‾).

В итоге передачи коэнзимом Q (или другими переносчиками) электронов кислороду могут развиваться следующие варианты реакций:

О2 + е‾ → О2

О2‾ + е‾ + 2Н+ → Н2О2

Н2О2 + е‾ + Н+ → Н3О2 → Н2О +НО‾

2НО‾ + е‾ + 2Н+ → 2Н2О

Образующиеся при этом промежуточные продукты – супероксидный радикал (О2‾), пероксид водорода (Н2О2) и радикал (НО‾) – являются мощными окислителями, накопление которых чрезвычайно токсично для тканей организма человека.

Но кислород может проявить свою оксидантную активность еще на этапе транспорта к местам использования. Преодалевая различные клеточные мембраны (стенки кровеносных сосудов, оболочки клеток и др.), он может отнимать электроны (окислять) у непердельных (полиненасыщенных) жирных кислот фосфолипидов, входящих в состав клеточных оболочек. Это вызывает пероксидное окисление мембранных липидов, приводящее к повреждению структуры и функции мембран, в частности, нарушению их проницаемости.

Источником свободнорадикальных соединений могут быть и другие неферментативные, спонтанно протекающие процессы. Так супероксид может образоваться при частичном спонтанном окислении оксигемоглобина в метгемоглобин:

Нb(Fе2+) + О2 → НbO2(Fе2+) → Нb(Fе3+) + О2

Пероксид водорода может образовываться при окислении молекулярным кислородом восстановленных коферментов оксидаз аминокислот (ФАД-Н2 и ФМН-Н2) по схеме:

ФАД-Н2 (ФМН-Н2) + О2 → ФАД (ФМН) + Н2О2

Необходимо добавить, что все перечисленные выше свободные радикалы крайне реакционноспособны и могут вступать в другие неферментативные реакции окисления, приводящие к образованию новых свободнорадикальных соединений.

Среди отрицательных воздействий свободных радикалов на ткани организма можно также отметить окислительное повреждение ДНК. Доказано воздействие активных форм кислорода на белки, приводящее к их химической и структурной модификации (окислительная денатурация).

Существующая в организме система защиты от свободных радикалов включает в себя два основных способа: неферментативный и ферментативный.

Неферментативная защита осуществляется с помощью антиоксидантов – веществ, взаимодействующих со свободными радикалами, в результате чего снижается их реакционная способность и прекращается отрицательное воздействие на организм. К веществам, обладающим высокой антиоксидантной активностью относятся витамины А, С, Е, микроэлементы селен, цинк, медь, марганец, железо. Перечень веществ, обладающих антиоксидантной активностью, в последние годы быстро пополняется.

Ферментативная защита от свободных радикалов обеспечивается комплексом двух ферментов: супероксиддисмутазой и каталазой. Первый из ферментов катализирует реакцию между двумя супероксидными радикалами и ионами водорода, проходящую по уравнению:

О2‾ + О2‾ + 2Н+ → Н2О2 + О2

Образующийся в этой, а также других реакциях, протекающих спонтанно, пероксид водорода разлагается на воду и кислород другим участником данного комплекса - каталазой:

2О2 → 2Н2О + О2

Супероксиддисмутаза и каталаза содержатся в клетках всех органов и тканей, а также биологических жидкостях организма человека. Особенно высока их концентрация в митохондриях клеток и пероксисомах.