
- •Розділ 1. Теорія множин
- •1. Поняття множини
- •2. Найпростіші операції над множинами
- •3. Числові множини
- •4. Обмежені множини. Верхні та нижні грані множин
- •5. Поняття функції (відображення)
- •6. Еквівалентні множини. Потужність множин
- •7. Потужність континуума
- •Розділ 2. Послідовності. Функції однієї змінної
- •1. Числові послідовності
- •2. Границя послідовності
- •3. Застосування послідовностей в економіці
- •4. Поняття функції
- •5. Способи задання функції
- •6. Деякі властивості функцій
- •7. Функція, обернена до даної
- •8. Класифікація функцій
- •9. Основні методи побудови графіків функцій
- •10. Приклади застосування функцій в економіці
- •11. Границя функції
- •12. Нескінченно малі і нескінченно великі функції
- •13. Основні теореми про границі функцій
- •14. Обчислення границь функцій
- •15. Істотні границі Перша істотна границя
- •Друга істотна границя
- •16. Порівняння нескінченно малих
- •17. Неперервність функції в точці
- •18. Властивості функцій, неперервних в точці
- •19. Точки розриву і їхня класифікація
- •20. Властивості функцій, неперервних на відрізку
- •Розділ 3. Диференціальне числення функції однієї змінної
- •1. Задачі, що приводять до поняття похідної функції
- •2. Поняття похідної
- •3. Геометричний зміст похідної. Рівняння дотичної і нормалі до кривої
- •4. Диференційованість функції в точці
- •5. Похідні елементарних функцій
- •6. Основні правила диференціювання
- •7. Похідна складної функції
- •8. Логарифмічне диференціювання. Похідна степеневої, показникової, показниково-степеневої функцій
- •9. Похідна оберненої функції. Похідні обернених тригонометричних функцій
- •10. Таблиця похідних
- •11. Похідна неявно заданої функції
- •12. Похідна функції, заданої параметрично
- •13. Похідні вищих порядків
- •14. Наближені обчислення за допомогою похідної
- •15. Еластичність функції
- •Еластичності елементарних функцій:
- •16. Застосування еластичності в економічному аналізі Еластичність попиту відносно ціни
- •Еластичність і податкова політика
- •17. Основні теореми диференціального числення
- •18. Правило Лопіталя
- •19. Зростання і спадання функції на проміжку
- •20. Екстремуми функції
- •Необхідна умова екстремуму диференційованої функції.
- •Перша достатня умова екстремуму.
- •Друга достатня умова екстремуму.
- •Третя достатня умова екстремуму.
- •21. Найбільше і найменше значення функції на відрізку
- •22. Випуклість, увігнутість графіка функції. Перегин
- •Необхідна і достатня умова випуклості (увігнутості) графіка функції.
- •Необхідна умова точки перегину.
- •Достатні умови точки перегину.
- •23. Асимптоти графіка функції
- •24. Повне дослідження і побудова графіка функції
- •25. Застосування похідної в економіці Граничний аналіз в економіці.
- •Задачі на екстремум.
- •Розділ 4. Диференціальне числення функції багатьох змінних
- •1. Основні поняття
- •2. Границя і неперервність
- •3. Частинні похідні функції
- •4. Повний диференціал
- •5. Похідна функції за даним напрямком. Градієнт
- •6. Частинні похідні і диференціали вищих порядків
- •7. Локальний екстремум функції багатьох змінних
- •8. Неявно задані функції
- •9. Умовний екстремум
- •10. Найбільше і найменше значення функції в області
- •11. Метод найменших квадратів
- •12. Економічні задачі
6. Деякі властивості функцій
Однією з основних задач математичного аналізу є визначення властивостей функції.
Функція
,
що має область визначення симетричну
відносно початку координат, називається
парною, якщо
:
і непарною, якщо :
.
Прикладами парних функцій можуть бути
функції
,
і т.д. Відповідно непарними функціями
є функції
,
.
Відзначимо, що функція може бути ні
парною, ні непарною, наприклад,
,
,
та ін.
Неважко показати, що графіки парних функцій симетричні відносно вісі ординат, а графіки непарних функцій симетричні відносно початку координат.
Функція
називається періодичною,
якщо існує таке додатне число
:
.
При цьому число
називається періодом
функції. Відомо, що функції
,
періодичні з періодом
,
а функції
,
періодичні з періодом
.
Можна показати, якщо число
є періодом функції, число
(
)
також є періодом цієї функції. Якщо
функція
періодична з періодом
,
функція
періодична з періодом
.
Справді,
.
Наприклад, функція
періодична з періодом
,
функція
періодична з періодом
.
Нулями функції називаються абсциси
точок перетину графіка функції з віссю
абсцис, тобто розв’язки рівняння
.
Розв’язати рівняння
іноді важко, що вимагає наближених
методів.
Функція
називається зростаючою
на проміжку, якщо для будь-яких значень
аргументів
цього проміжку з умови
випливає, що
,
тобто більшому значенню аргументу
відповідає більше значення функції.
Відповідно функція
називається спадною
на проміжку, якщо для будь-яких двох
значень
цього проміжку з умови
випливає, що
,
тобто більшому значенню аргументу
відповідає менше значення функції.
Функція
називається не
зростаючою на проміжку, якщо для
будь-яких значень аргументів
цього проміжку з умови
випливає, що
.
Відповідно функція називається не спадною на проміжку, якщо для будь-яких двох значень цього проміжку з умови випливає, що .
Зростаючі, спадні, не зростаючі та не спадні функції називаються монотонними.
7. Функція, обернена до даної
Нехай функція визначена і монотонна в деякій області. Задаючи значення , будемо одержувати відповідні значення . Можна, вважаючи аргументом, а функцією, задавати значення і обчислювати відповідні значення . У такому випадку рівняння буде визначати як неявну функцію від .
Припустимо, що задане рівняння розв’язане
відносно
,
тобто, одержимо
.
Знайдена функція називається оберненою
до функції
.
Якщо, дотримуючись стандартних позначень,
під
розуміти незалежну змінну, а під
– функцію, тобто залежну змінну, обернену
функцію варто писати у вигляді
.
Функції
і
задають тим самим графіком, оскільки
визначають ту саму функціональну
залежність між x і y.
Рис. 2.2.
.
Так, щоб знайти функцію обернену до
,
знайдемо
і перемінимо місцями
і
,
одержимо функцію
,
обернену до функції
,
графік якої зображено на рис. 2.2.