
- •Розділ 1. Теорія множин
- •1. Поняття множини
- •2. Найпростіші операції над множинами
- •3. Числові множини
- •4. Обмежені множини. Верхні та нижні грані множин
- •5. Поняття функції (відображення)
- •6. Еквівалентні множини. Потужність множин
- •7. Потужність континуума
- •Розділ 2. Послідовності. Функції однієї змінної
- •1. Числові послідовності
- •2. Границя послідовності
- •3. Застосування послідовностей в економіці
- •4. Поняття функції
- •5. Способи задання функції
- •6. Деякі властивості функцій
- •7. Функція, обернена до даної
- •8. Класифікація функцій
- •9. Основні методи побудови графіків функцій
- •10. Приклади застосування функцій в економіці
- •11. Границя функції
- •12. Нескінченно малі і нескінченно великі функції
- •13. Основні теореми про границі функцій
- •14. Обчислення границь функцій
- •15. Істотні границі Перша істотна границя
- •Друга істотна границя
- •16. Порівняння нескінченно малих
- •17. Неперервність функції в точці
- •18. Властивості функцій, неперервних в точці
- •19. Точки розриву і їхня класифікація
- •20. Властивості функцій, неперервних на відрізку
- •Розділ 3. Диференціальне числення функції однієї змінної
- •1. Задачі, що приводять до поняття похідної функції
- •2. Поняття похідної
- •3. Геометричний зміст похідної. Рівняння дотичної і нормалі до кривої
- •4. Диференційованість функції в точці
- •5. Похідні елементарних функцій
- •6. Основні правила диференціювання
- •7. Похідна складної функції
- •8. Логарифмічне диференціювання. Похідна степеневої, показникової, показниково-степеневої функцій
- •9. Похідна оберненої функції. Похідні обернених тригонометричних функцій
- •10. Таблиця похідних
- •11. Похідна неявно заданої функції
- •12. Похідна функції, заданої параметрично
- •13. Похідні вищих порядків
- •14. Наближені обчислення за допомогою похідної
- •15. Еластичність функції
- •Еластичності елементарних функцій:
- •16. Застосування еластичності в економічному аналізі Еластичність попиту відносно ціни
- •Еластичність і податкова політика
- •17. Основні теореми диференціального числення
- •18. Правило Лопіталя
- •19. Зростання і спадання функції на проміжку
- •20. Екстремуми функції
- •Необхідна умова екстремуму диференційованої функції.
- •Перша достатня умова екстремуму.
- •Друга достатня умова екстремуму.
- •Третя достатня умова екстремуму.
- •21. Найбільше і найменше значення функції на відрізку
- •22. Випуклість, увігнутість графіка функції. Перегин
- •Необхідна і достатня умова випуклості (увігнутості) графіка функції.
- •Необхідна умова точки перегину.
- •Достатні умови точки перегину.
- •23. Асимптоти графіка функції
- •24. Повне дослідження і побудова графіка функції
- •25. Застосування похідної в економіці Граничний аналіз в економіці.
- •Задачі на екстремум.
- •Розділ 4. Диференціальне числення функції багатьох змінних
- •1. Основні поняття
- •2. Границя і неперервність
- •3. Частинні похідні функції
- •4. Повний диференціал
- •5. Похідна функції за даним напрямком. Градієнт
- •6. Частинні похідні і диференціали вищих порядків
- •7. Локальний екстремум функції багатьох змінних
- •8. Неявно задані функції
- •9. Умовний екстремум
- •10. Найбільше і найменше значення функції в області
- •11. Метод найменших квадратів
- •12. Економічні задачі
11. Похідна неявно заданої функції
Нехай функція задана неявно у вигляді
.
У деяких випадках рівняння, що задає функцію, можна розв’язати відносно y і знайти похідну звичайним способом. Але найчастіше дане нам рівняння елементарними засобами не приводиться до явного вигляду.
Обчислимо похідні обох частин рівності :
.
З останньої рівності одержимо:
. (3.16)
Нехай, наприклад, функція задана у
вигляді
.
Тоді
або
,
звідки
.
12. Похідна функції, заданої параметрично
Нехай функція задана у вигляді:
При цьому функції
і
диференційовані, і функція
має обернену
.
Тоді визначену параметрично рівняннями
функцію можна розглядати як складну
функцію
,
де
,
t – проміжний аргумент.
За правилом диференціювання складної функції одержимо
.
На підставі теореми 3.3
,
тому
. (3.17)
Приклад
3.8. Обчислити кутовий коефіцієнт
дотичної до кола
в точці, для якої
.
Розв’язання.
Оскільки кутовий коефіцієнт дотичної
в точці
дорівнює значенню похідної
в цій точці, знайдемо
за формулою (3.17):
,
,
.
У точці, для якої
,
похідна
набуває значення
.
Отже, кутовий коефіцієнт дотичної до
кола в точці, для якої
,
.
13. Похідні вищих порядків
Нехай дана функція
.
Її похідна
у свою чергу є функцією від
.
Для неї також можна знайти похідну. Якщо
вона існує, то вона називається похідною
другого порядку
і записується так:
(читається “ігрек два штрихи від
”)
або
,
або
(читається “де два ігрек по де ікс
двічі”). Таким чином, за означенням
або
.
Наприклад, для
,
.
Друга похідна має простий фізичний
зміст. Якщо заданий закон прямолінійного
руху
,
то, як відомо,
– швидкість у момент часу
.
Тоді
,
але це швидкість зміни швидкості в даний
момент
,
тобто прискорення.
Отже,
– друга похідна шляху за часом є
прискорення руху в даний момент часу
.
Похідна від другої похідної називається третьою похідною чи похідною третього порядку.
Означення
3.3. Похідною
-го
порядку називається похідна від похідної
-го
порядку.
Ці похідні позначають
або символами
чи
.
Приклад 3.9. Знайти похідну -го порядку для функцій
а)
,
б)
.
Розв’язання. Маємо:
а)
,
,
...,
.
б)
,
,
,
,
...,
.
14. Наближені обчислення за допомогою похідної
Теорема
3.4. Приріст функції
і її диференціал
є еквівалентними нескінченно малими
при
.
Дійсно, використовуючи означення еквівалентних нескінченно малих, одержуємо
.
Тут
,
оскільки
є нескінченно малою при
.
Можна стверджувати, що при досить малих значеннях :
. (3.18)
При розв'язанні багатьох задач приріст
функції заміняють її диференціалом,
що, звичайно, обчислити простіше. Виходячи
з наближеної рівності (3.18) можна записати,
що
або
. (3.19)
Остання формула дає можливість приблизно
обчислити значення функції для
“незручного” значення аргументу
,
замінивши його “зручним”
,
при цьому у формулі
– це різниця між заданим значенням
аргументу і зручним для обчислення.
Приклад
3.10. Дана функція
.
Знайти приблизно
.
Розв’язання.
Приймемо
,
,
тоді
.
На підставі формули (3.19) для даної функції
складемо наближену рівність:
.
Оскільки
,
,
,
одержимо
.