
- •Алгебра
- •График учебного процесса
- •III семестр
- •IV семестр
- •1. Цели и задачи дисциплины, место в учебном процессе, требования к уровню содержания дисциплины.
- •2. Технологическая карта дисциплины
- •3. Содержание дисциплины
- •Самостоятельная работа (темы , выносимые на срс и методическая поддержка срс)
- •Литература для самостоятельной работы
- •4. Организация текущего и промежуточного контроля знаний
- •5. Методические рекомендации преподавателю
- •6. Работа с ресурсами Internet
- •7. Материальное обеспечение дисциплины
- •8. Методическое обеспечение дисциплины:
- •Глоссарий
- •Вопросы, выносимые на экзамены
- •III семестр
- •IV семестр
- •Методические рекомендации по организации внеаудиторной и аудиторной самостоятельной работы студентов
- •Контрольно - измерительные материалы
- •III семестр Модуль 1
- •Модуль 2 Контрольная работа по теме «Многочлены от одной переменной»
- •IV семестр Модуль 1 Тест по теме «Многочлены над полем рациональных чисел» для межсессионного учета знаний
- •Контрольная работа по теме «Многочлены над полями рациональных, действительных и комплексных чисел»
- •Модуль 2 Контрольная работа по теме «Расширения полей и задачи, связанные с этим»
- •Методические указания по подготовке практических занятий
- •Методические рекомендации по выполнению курсовых работ
- •Темы курсовых работ
- •1. Вопросы делимости и решения уравнений в кольце целых чисел.
- •. Программа итоговой государственной аттестации студентов
- •Группы и подгруппы
- •Группа подстановок
- •Подгруппы
- •Циклические группы
- •Разложение группы по подгруппе
- •6. Задачи и упражнения для самостоятельного выполнения
- •Нормальные делители. Фактор - группы.
- •1. Нормальные делители
- •2. Фактор – группы
- •Гомоморфизмы групп
- •Задачи и упражнения для самостоятельного выполнения
- •Элементарные сведения о кольцах
- •Кольцо с единицей
- •Делители нуля. Область целостности
- •Поле частных
- •Задачи и упражнения для самостоятельного выполнения
- •Гомоморфизмы колец
- •Понятие идеала. Примеры
- •Операции над идеалами
- •Сравнения и классы вычетов по идеалу. Фактор – кольцо
- •Гомоморфизм колец. Теорема о гомоморфизмах
- •Характеристика кольца с единицей
- •Задачи и упражнения для самостоятельного выполнения
- •Делимость в области целостности
- •2. Кольцо главных идеалов
- •Евклидовы кольца.
- •Задачи и упражнения для самостоятельного выполнения
- •1. Многочлены над полем
- •2. Кольцо многочленов как евклидово кольцо
- •3. Техника деления с остатком. Схема Горнера
- •4. Теорема Безу
- •5. Наибольший общий делитель. Алгоритм Евклида
- •6.Наименьшее общее кратное
- •7. Неприводимые многочлены
- •8. Каноническое разложение многочлена
- •9. Вопросы и упражнения для самостоятельной работы
- •Комплексных чисел
- •1. Вводные замечания
- •2. Свойства модуля многочлена
- •3. Основная теорема алгебры комплексных чисел
- •4. Разложение многочлена над полем с в произведение линейных множителей
- •5. Разложение многочленов над полем r в произведение неприводимых множителей
- •6 Задачи и упражнения для самостоятельного выполнения
- •IV семестр
- •Приводимость и неприводимость многочленов над полем действительных, комплексных и рациональных чисел
- •Рациональные корни многочлена с рациональными коэффициентами
- •Понятие алгебраического числа
- •1. Вводные замечания
- •2. Свойства модуля многочлена
- •3. Основная теорема алгебры комплексных чисел
- •4. Разложение многочлена над полем с
- •5. Разложение многочленов над полем r
- •6 Задачи и упражнения для самостоятельного выполнения
- •1. Алгебраические числа.
- •2. Простое алгебраическое расширение поля.
- •3. Уничтожение иррациональности в знаменателе.
- •4. Конечные расширения полей.
- •6. Вопросы и упражнения для самостоятельной работы.
- •Лекции 7-8
- •Поле алгебраических чисел
- •Понятие разрешимости в квадратных радикалах
- •Определение 1. Алгебраическое уравнение
- •Связь с расширением числовых полей
- •4. Признаки того, что число выражается в квадратных радикалах.
- •5. Общий критерий разрешимости в квадратных радикалах
- •6. Примеры геометрических задач, сводящихся к уравнениям, неразрешимым в квадратных радикалах
- •Задача об удвоении куба
- •Задача о трисекции угла
- •Задача о квадратуре круга
- •7. Вопросы и упражнения для самостоятельной работы
Кольцо с единицей
Из определения
кольца не вытекает существование или
отсутствие в нем единицы е. Но, как
было доказано в алгебре на I
курсе, если в кольце К единичный
элемент существует, то только один. В
нулевом кольце
,
состоящем только из одного нуля, элемент
0 одновременно является и единицей,
т.к.
.
Определение. Нулевое кольцо К, в котором есть единичный элемент е, называется кольцом с единицей.
Примерами колец с единицей являются: кольцо целых чисел Z; кольцо рациональных чисел Q; кольцо действительных чисел R; кольцо комплексных чисел С; кольцо матриц n-го порядка над полями R, Q, C, единицей этих колец является матрица
Примерами кольца, в котором нет единицы, служит кольцо целых чисел, кратных произвольно выбранному натуральному числу m>1; в частности, нет единицы в кольце четных целых чисел.
Пусть К – произвольное кольцо с единицей е. Для всякого отличного от нуля элемента а К справедливы равенства
Отсюда следует,
что
.
Если для элемента
а
К
в кольце К существует обратный
элемент а-1, то только один.
Элемент е является обратным для
самого себя. Из равенства
следует, что элемент – е также
является обратным для самого себя.
Элемент 0 не имеет обратного элемента,
т.к.
для любого а
К.
Если для а
К
в кольце К существует обратный
элемент а-1, то а , по
определению делителей элемента кольца,
является делителем e,
т.к.
.
Поэтому можно принять такое определение.
Определение 2. Элемент а, для которого в кольце К существует обратный элемент а-1, называется обратимым или делителем единицы.
Пример. Кольцо Z является самым простым примером коммутативного кольца, в котором только 1 и -1 являются делителями единицы.
Теорема 3. Множество К* всех делителей единицы кольца К является группой по умножению.
□ Пусть элементы
,
т.е. являются делителями единицы е.
Значит
и
,
а это значит, что а-1 и ab
тоже являются делителями е, а, значит,
содержатся в К*, е также
содержится в К*. Поэтому
К* является мультипликативной
группой.
Группа К* называется группой делителей единичного элемента, или группой обратимых элементов кольца К.■
Делители нуля. Область целостности
Пусть К –
произвольное кольцо. Для
выполняется равенство
.
Следовательно, каждый элемент кольца
является делителем нуля. Но в теории
колец принимают следующее определение
делителей нуля.
Определение
3. Элементы а
и b
кольца К
называются делителями
нуля, если
и
,
но ab=0,
при этом а
называется левым,
а b
– правым
делителем нуля.
В коммутативных кольцах очевидно, что понятия левого и правого делителей нуля совпадают.
Пример 1.
В качестве кольца К рассмотрим
кольцо классов вычетов Zm,
где m – некоторое составное
целое число, например,
.
Тогда классы вычетов
и
отличные от нулевого класса
,
а их произведение равно нулевому классу:
.
Следовательно, классы
и
являются делителями нуля
в кольце Zm.
Пример 2.
В кольце Rn
матриц n-го порядка
(
)
с действительными элементами матрицы
и
являются делителями в кольце Rn.
Определение 4. Коммутативное кольцо с единицей, в котором нет делителей нуля, называется областью целостности.
Пример 1. Очевидно, что всякое числовое кольцо является областью целостности.
Пример 2.
Областью целостности является всякое
поле Р, т.к.
.