
- •Оглавление
- •Общие методические указания по изучению дисциплины
- •Основные теоретические положения математического анализа
- •Теория множеств
- •Основные свойства и графики элементарных функций
- •Предел функции, непрерывность функции, производная функции
- •Анализ функций одной и двух переменных
- •Интегрирование функций
- •Определенный интеграл, основные теоремы
- •Способы интегрирования
- •Дифференциальные уравнения
- •Понятие дифференциального уравнения
- •Дифференциальные уравнения первого порядка Общие сведения
- •Уравнение первого порядка с разделяющимися переменными
- •Однородные дифференциальные уравнения первого порядка
- •Линейное уравнение первого порядка
- •Векторная алгебра
- •Понятие вектора и линейные операции над векторами Понятие вектора
- •Линейные операции над векторами
- •Свойства сложения векторов:
- •Понятие линейной зависимости векторов
- •Линейные комбинации двух векторов
- •Линейные комбинации трех векторов
- •Понятие базиса. Аффинные координаты
- •Проекция вектора на ось
- •Декартова прямоугольная система координат (дпск) в пространстве.
- •Полярная система координат
- •Скалярное произведение двух векторов Определение скалярного произведения (сп)
- •Геометрические свойства сп
- •Алгебраические свойства сп
- •Выражение скалярного произведения (сп) в декартовых прямоугольных координатах (дпк)
- •Векторное произведение двух векторов Правые и левые тройки векторов и системы координат
- •Векторное произведение двух векторов (вп)
- •Геометрические свойства вп
- •Алгебраические свойства векторного произведения (вп)
- •Понятие матрицы и определителя второго и третьего порядка
- •Выражение векторного произведения (вп) в декартовых прямоугольных координатах (дпк)
- •Смешанное произведение трех векторов
- •Выражение смешанного произведения в декартовых координатах
- •Аналитическая геометрия на плоскости
- •Различные виды уравнений прямой на плоскости Общее уравнение прямой
- •Уравнение прямой с угловым коэффициентом
- •Уравнение прямой в отрезках
- •Каноническое уравнение прямой
- •Угол между двумя прямыми. Условия параллельности и перпендикулярности двух прямых
- •Кривые второго порядка
- •Эллипс Определение эллипса и вывод его канонического уравнения
- •Исследование формы эллипса
- •Эксцентриситет эллипса
- •Гипербола Определение гиперболы и вывод ее канонического уравнения
- •Исследование формы гиперболы
- •Асимптоты гиперболы
- •Равнобочная гипербола
- •Сопряженная гипербола
- •Эксцентриситет и фокальные радиусы гиперболы
- •Парабола Определение параболы и ее уравнение
- •Исследование формы параболы
- •Общее свойство кривых второго порядка - эллипса, гиперболы и параболы Директриса эллипса, гиперболы и параболы
- •Аналитическая геометрия в пространстве Плоскость как поверхность первого порядка
- •Неполные уравнения плоскости
- •Уравнение плоскости в отрезках
- •Нормальное уравнение плоскости. Расстояние от точки до плоскости
- •Уравнение прямой в пространстве
- •Направляющий вектор прямой. Канонические уравнения прямой. Параметрические уравнения прямой
- •Некоторые дополнительные предложения и примеры
- •Линейная алгебра
- •Матрицы. Основные определения
- •Действия над матрицами
- •Обратная матрица
- •Системы линейных уравнений Система линейных уравнений
- •Методы решения системы n линейных уравнений с n неизвестными
- •Методы решения системы m линейных уравнений с n неизвестными. Метод Гаусса
- •Система m линейных уравнений с n переменными
- •Задачи оптимизации
- •Математические модели оптимизации
- •Задачи линейного программирования
- •Задачи динамического программирования
- •Примеры решения типовых задач Задачи по математическому анализу, линейной алгебре и методам оптимизации
- •Варианты заданий к контрольным работам
- •Контрольная работа №1
- •Задача 6. Аналитическая геометрия на плоскости а) Линии первого порядка
- •Контрольная работа №2
- •Задачи для самостоятельной работы Пределы и непрерывность
- •Производная и ее применение
- •Определенный интеграл
- •Несобственные интегралы
- •1. Дифференциальные уравнения первого порядка
- •2. Однородные дифференциальные уравнения первого порядка
- •Вопросы к зачету
- •Определенный интеграл, основные теоремы.
- •Вопросы к экзамену
- •Определенный интеграл, основные теоремы.
- •Системы линейных уравнений.
- •Задачи линейного программирования.
- •Литература
- •К.Т.Н., доц. Тугуз Юрий Рамазанович Математика
- •Учебно-методическое пособие
- •344002, Г. Ростов-на-Дону, ул. Пушкинская, 70
-
Кривые второго порядка
Рассмотрим линии, уравнения которых в декартовой системе координат являются алгебраическими уравнениями второй степени, то есть будем рассматривать алгебраические кривые второго порядка. Будут рассмотрены три вида линий второго порядка: эллипсы, гиперболы и параболы. Основной целью является ознакомление с важнейшими геометрическими свойствами указанных линий.
Эллипс Определение эллипса и вывод его канонического уравнения
Эллипсом называется геометрическое место точек на плоскости, для которых сумма расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина.
Рис.1 |
Для вывода уравнения эллипса выберем систему координат XOY так, чтобы фокусы эллипса F1 и F2 лежали на оси абсцисс, а начало координат делило бы расстояние между фокусами пополам (рис.1). Обозначим F1F2=2c. Тогда координаты фокуса F1 будут (с;0), а координаты фокуса F2 будут (-с;0). |
Возьмем произвольную точку М(x,y), лежащую на эллипсе. Соединим точку М с фокусами F1F2. Длины отрезков MF1 и MF2 обозначим соответственно через r1 r2: МF1=r1; MF2=r2. Числа r1 и r2 называются фокальными радиусами точки М эллипса. Учитывая, что сумма r1 и r2 есть величина постоянная (это следует из определения эллипса), обозначим: r1+r2=2a, следует 2а>2c или a>c. В противном случае либо не существует точек, удовлетворяющих поставленным требованиям, либо совокупность этих точек сводится к отрезку F1F2.
На основании определения эллипса как геометрического места точек можно утверждать, что для всех точек эллипса, и только для них, должно выполняться равенство
r1+r2=2a (1)
Определим r1 и r2 по формулам расстояния между двумя точками:
, (2)
. (3)
Подставляя найденные значения r1 и r2 в уравнение (1), получим:
. (4)
Уравнение (4) является уравнением эллипса. Однако полученная форма уравнения является неудобной для пользования, поэтому обычно уравнение эллипса дается в ином виде.
Преобразуем уравнение (4). Пусть М(x,y) – точка эллипса, то есть равенство (4) имеет место.
Преобразовав, получим:
. (5)
Уравнение (5) называется каноническим уравнением эллипса, это уравнение второй степени; таким образом, эллипс есть линия второго порядка.
Исследование формы эллипса
Приступим к изучению формы эллипса. В уравнении эллипса содержатся только члены с четными степенями текущих координат. Отсюда следует важная геометрическая особенность: эллипс, определяемый уравнением
,
симметричен как относительно оси Ox, так и относительно оси Oy. Другими словами, если точка М0(x0;y0) лежит на эллипсе, то точки М1(x0;-y0), M3(-x0;y0), M4(-x0;-y0), симметричные точке М0 соответственно относительно оси Ox, оси Oy и начала О, также лежат на эллипсе. Это позволяет при изучении формы и построении эллипса ограничиться первым квадрантом, а затем получившуюся кривую с помощью зеркального отражения построить во всех четырех квадрантах. В случае канонического задания эллипса координатные оси являются осями симметрии эллипса. Точка пересечения осей симметрии называется центром эллипса.
Из
канонического уравнения эллипса
выразим y через х:
.
Так как изучение формы эллипса достаточно провести в первом квадранте, то в этом равенстве надо взять лишь знак плюс, то есть
,
и полагать, что х 0.
Рис.2 |
|
Дадим переменной х несколько значений, 0<x<a, и, получив соответствующие значения y, b>y>0, построим ряд точек, принадлежащих эллипсу. Учитывая высказанные ранее соображения и соединив найденные точки эллипса плавной линией, получим дугу эллипса В1А1 в первом квадранте. Произведя зеркальное отображение дуги В1А1 относительно координатных осей, получим весь эллипс. Отсюда следует, что эллипс представляет собой замкнутую кривую с двумя взаимно перпендикулярными осями симметрии.
Отрезок А2А1 и его длина 2а называется большой осью эллипса, отрезок ОА1 и его длина а называется большой полуосью эллипса. Отрезок В2В1 и его длина 2b называется малой осью эллипса; отрезок ОВ1 и его длина b называется малой полуосью эллипса. Длина отрезка F2F1, т.е. число 2с, называется фокусным расстоянием. Точки пересечения эллипса с его осями А1, А2, В1, В2 называются вершинами эллипса, а точка пересечения его осей называется центром эллипса.
Примечание.
Если a=b, то уравнение эллипса имеет вид
или x2+y2=a2.
Это уравнение окружности с центром в
начале координат и радиусом, равным а.
Можно сказать, что окружность является
частным случаем эллипса.