Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FREGRAVOL1.pdf
Скачиваний:
71
Добавлен:
05.06.2015
Размер:
5.17 Mб
Скачать

326 8 Conclusion of Volume 1

urdo = (∂coordi[[f ]]Gam[[a,g,b]]coordi[[g]]Gam[[a,f,b]]);

urdo = Simplify[urdo, Trig True];

mdim

= [ −

weggio Simplify Gam[[a,f,z]] Gam[[z,g,b]]

z=1

mdim

→ ];

Gam[[a,g,z]] Gam[[z,f,b]], Trig True

z=1

Rie[[a, b, f, g]] = Simplify[ 12 (urdo + weggio)

, Trig True]; }, {f, 1, mdim}], {g, 1, mdim}]; }, {b, 1, mdim}]; }, {a, 1, mdim}]; Print["Finished"];

Print["————————-"];

Print["Now I evaluate the curvature 2-form of your space"]; RR = Table[0, {i, 1, mdim}, {j, 1, mdim}];

mdim mdim

[ [{ [[ ]] = }

Do Do RR i, j 2 Rie[[i,j,a,b]] (holviel[[a]]**holviel[[b]]) ,

a=1 b=a+1

{i, 1, mdim}], {j, 1, mdim}];

Print["I find the following answer"];

Do[Do[Print["R[", i, j, "] = ", RR[[i, j]]], {j, 1, mdim}], {i, 1, mdim}]; Print["The result is encoded in a tensor RR[i,j]"];

Print["Its components are encoded in a tensor Rie[i,j,a,b]"]; Print["—————————"];

Print[" Now I calculate the Ricci tensor"]; ricten = Table[0, {a, 1, mdim}, {b, 1, mdim}];

Do[ricten[[b, e]] = Simplify[Sum[Rie[[xx, b, xx, e]], {xx, mdim}]]; ulla = 0;

If[ricten[[b, e]]=!=0, {

Print[b, " ", e, " ", " non-zero"]; Print["Ricci[", b, e, "]= ", ricten[[b, e]]];

ulla = ulla + 1; }],

{b, mdim}, {e, mdim}];

Print["I have finished the calculation"];

If[ulla == 0, {Print["The Ricci tensor is zero"]; }, { Print[" The tensor ricten[a,b]] giving the Ricci tensor "]; Print[" is ready for storing on hard disk"]; }]; Print["—————————-"];

-

-

Calculation of the Ricci Tensor of the Reissner Nordstrom Metric Using Metrigrav

mainmetric

OK I calculate your space, Give me the data

Give me the dimension of your space

B Mathematica Packages

327

Your space has dimension n = 4

Now I stop and you give me two vectors of dimension 4 vector coordi = vector of coordinates

vector diffe = vector of differentials Next you give me the metric as ds2 =

Then to resume calculation you print metricresume {Null}

coordi = {t, r, θ, ϕ};

 

 

 

 

 

 

 

 

 

diffe = {dt, dr, dθ, dϕ};

 

 

 

1

 

 

ds2 = − 1 Ar + rQ2

dt2 +

1 Ar + rQ2

dr2 + r2

Sin[θ]2

dϕ2 + r2 dθ2;

metricresume

 

 

 

 

 

 

 

 

 

 

I resume the calculation

 

 

 

 

 

 

First I extract the metric coefficients from your data

 

 

Then I calculate the inverse metric

 

 

 

 

Done!

 

 

 

 

 

 

 

 

 

 

 

 

and I calculate also the metric determinant

 

 

 

Done

 

 

 

 

 

 

 

 

 

 

 

 

I perform the calculation of the Christoffel symbols

 

 

—————–

 

 

 

 

 

 

 

 

 

 

I finished

 

 

 

 

 

 

 

 

 

 

 

the Levi Civita connection is given by:

 

 

 

 

Γ [11] =

 

dr(2Q+Ar)

 

 

 

 

 

 

 

 

 

2r(Q+r(A+r))

 

 

 

 

 

 

 

Γ [12] =

 

dt(2Q+Ar)

 

 

 

 

 

 

 

 

 

2r(Q+r(A+r))

 

 

 

 

 

 

 

Γ [13] = 0

 

 

 

 

 

 

 

 

 

 

 

Γ [14] = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)(Q

r( A

r))

 

 

 

 

Γ [21] = dt(2Q+Ar 2r5 +

− +

 

 

 

 

 

 

 

 

Ar)

 

 

 

 

 

 

 

 

 

Γ [22] =

 

dr(2Q2

+2r

3

 

 

 

 

 

 

 

 

2Qr2Ar

 

 

 

 

 

 

 

 

Γ [23] = dθ A Q+r r2

 

2

 

 

 

 

Γ [24] =

dϕ(Q+r(A+r))Sin[θ ]

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

Γ[31] = 0

Γ[32] = drθ

Γ[33] = drr

Γ[34] = dϕCos[θ ]Sin[θ ]

Γ[41] = 0

Γ[42] = drϕ

Γ[43] = dϕCot[θ ]

Γ[44] = drr + dθ Cot[θ ] Task finished

The result is encoded in a tensor Gam[a,b,c]

—————–

328

8 Conclusion of Volume 1

Now I calculate the Riemann tensor I tell you my steps:

a = 1 b = 1 b = 2 b = 3 b = 4 a = 2 b = 1 b = 2 b = 3 b = 4 a = 3 b = 1 b = 2 b = 3 b = 4 a = 4 b = 1 b = 2 b = 3 b = 4

Finished

————————-

Now I evaluate the curvature 2-form of your space I find the following answer

R[11] = 0

R[12] =

 

(2

3Q+Ar)dt**dr

 

 

 

 

r (Q+r(A+r))

 

 

R[13] =

 

(2QAr

)dt**dθ

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2r

 

 

 

R[14] =

(2Q+Ar)dt**dϕSin[θ ]2

 

 

 

 

 

 

 

 

2r2

 

 

R[21] =

 

3Q2+Q(4A3r)r+Ar2(A+r) dt**dr

R[22] = 0

 

 

 

 

 

 

 

r6

 

 

 

(2Q Ar)dr**dθ

 

 

R[23] =

 

 

 

 

 

 

2r2

 

 

R[24] =

(2Q+Ar)dr**dϕSin[θ ]2

 

 

 

 

 

 

 

 

2r2

 

 

R[31] =

(2Q+Ar)(Q+r(A+r))dt**dθ

 

 

 

 

 

 

 

 

2r6

 

 

R[32] =

 

(22Q+Ar)dr**dθ

 

 

 

 

2r (Q+r(A+r))

 

 

R[33] = 0

 

 

 

 

 

 

 

 

 

2

R[34] =

(

Q

+

Ar)dθ **dϕSin θ

 

 

 

 

 

 

r2

[ ]

 

R[41] =

(2Q+Ar)(Q+r(A+r))dt**dϕ

 

 

2Q

+

 

2r6

 

 

R[42] =

(

 

 

Ar)dr**dϕ

 

 

 

 

2

 

 

 

 

 

 

 

 

2r

(Q+r(A+r))

 

 

R[43] =

 

(QAr)2dθ **dϕ

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

R[44] = 0

Q
2r2
QSin[θ ]2 2r2

B Mathematica Packages

329

The result is encoded in a tensor RR[i,j]

Its components are encoded in a tensor Rie[i,j,a,b]

—————————

Now I calculate the Ricci tensor

11 non-zero

Q(Q+r(6 A+r))

Ricci[11] =

22 non-zero

 

2r

 

 

 

 

 

 

 

Ricci[22] =

 

 

Q

2r2(Q

 

r(

A r))

 

 

 

+

 

− +

33 non-zero Ricci[33] = 44 non-zero Ricci[44] =

I have finished the calculation

The tensor ricten[[a,b]] giving the Ricci tensor is ready for storing on hard disk

—————————-

{Null}

MatrixForm[gg]

 

Q

A

1

 

0

0

 

1

r2

+ r

 

 

 

 

0

 

 

 

 

 

 

 

0

 

 

 

0

0

 

 

 

1+ r2

r

 

 

 

 

Q

A

 

 

 

 

 

0

 

0

 

r

2

0

 

 

 

 

 

 

 

 

0

 

0

 

0

r2Sin[θ ]2

 

MatrixForm[ricten]

Q(Q+r(A+r))

 

2r6

0

 

 

0

0

 

0

 

0

0

 

 

Q

0

0

 

 

2r2(Q+r(A+r))

 

 

 

0

 

Q

0

 

 

 

 

2r2

 

 

 

 

 

 

 

 

 

 

 

QSin θ

2

 

 

0

 

0

2r2[ ]

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]