Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FREGRAVOL1.pdf
Скачиваний:
71
Добавлен:
05.06.2015
Размер:
5.17 Mб
Скачать

7.3 Emission of Gravitational Waves

 

291

where:

 

 

κ =

16π G

(7.3.39)

 

3

7.3.3 Multipolar Expansion of the Perturbation

The next step in our elaboration of the general solution (7.3.3) for the metric perturbation consists of its systematic multipolar expansion. This will enable us to single out the contributions to the wave from the various angular momentum components of the source deformation. Since these contributions have a faster and faster distance decay at increasing angular momentum , it follows that for weak fields only the first non-vanishing multipole needs to be considered. Due to the spin of the graviton which is s = 2 the first contributing multipole turns out to be the quadrupole as opposed to the case of electromagnetic radiation where the spin s = 1 of the photon selects the dipole as first non-vanishing and dominant contribution.

To implement the above outlined programme we begin by performing a partial Fourier (see Fig. 7.9) transform of the metric perturbation with respect to the time coordinate:

γμν (ω, x) = √1 2π

Inserting this in (7.3.3) we get:

γμν (ω, x) = −4G

The Hilbert gauge condition implies:

+∞ dt eiωt γμν (t, x)

(7.3.40)

−∞

 

d3r eiω|rr | Tμν (ω, r )

(7.3.41)

|r r |

 

0γ0ν = iωγ0ν = i γ

(7.3.42)

and since γμν is symmetric we can conclude:

 

i

 

 

 

γ0i =

 

j γj i

 

 

(7.3.43)

ω

 

 

 

i

1

i j γij

 

γ00 =

 

i γi0 = −

 

(7.3.44)

ω

ω2

Hence it suffices to determine the spatial components γij . The others are easily retrieved from these.

7.3.3.1 Multipolar Expansion

Let us consider the spatial part of the Green function, which apart from a factor 4π is just the Green function of the Laplace operator discussed in Sect. 7.2.1:

292

7 Gravitational Waves and the Binary Pulsars

Fig. 7.9 Jean Baptiste Joseph Fourier (March 21, 1768–May 16, 1830) is one among the incredibly large number of scientific geniuses giving fundamental contributions to the development of Modern Physics, Mathematics and Chemistry contributed by the Revolutionary and Napoleonic France. Other members of that group are Laplace, Lagrange, Monge, Carnot (father and son), to mention some. Born at Auxerre, Fourier was educated in a monastery and studied mathematics. He took prominent part in the Revolution and was appointed professor first at the Ecole Normale Superieure, then at the Ecole Polytechnique where he inherited the chair of Laplace. He served as officer in the Napoleonic Army and was even appointed governor of Egypt. Fourier was elected member of the French Academy of Sciences in 1817. Besides the introduction of the Fourier series and of the Fourier transform, Fourier discovered the equation of heat propagation and was the first to point out the green-house effect of the atmosphere. He died in Paris at the age of sixty-two

G x x

|

x

1 x

|

 

 

by means of a trivial manipulation we can rewrite it as follows:

G x x =

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

(x

 

x

 

 

x

 

x

2x

 

x

)1/2

 

Defining:

 

 

 

 

 

·

 

+

 

 

·

 

 

·

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

we obtain:

 

 

 

 

 

 

 

x

· x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G x

x

 

1

1

+

x

· x 2x · x

1/2

= R

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

that we can develop into power series of 1/R:

G x x =

1

 

1

 

 

1

x · x 2x · x

R

2

 

R3

 

+

3

 

 

1

 

x · x 2x · x 2 + · · ·

 

 

 

 

 

 

8

 

R5

(7.3.45)

(7.3.46)

(7.3.47)

(7.3.48)

(7.3.49)

(7.3.50)

7.3 Emission of Gravitational Waves

293

The next step is to reorganize the terms of order R3 and of order R5. In this way we obtain:

G x

 

x

 

1

 

 

 

 

 

 

x · x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.3.51)

= R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ R3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

3

 

 

(x · x )(x · x)

 

1

x · x

 

 

 

 

 

(7.3.52)

 

 

 

2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R5

 

 

 

 

R3

 

 

 

 

 

 

 

 

 

+

 

3

 

 

(x · x )2

3

(x · x )(x · x )

+ · · ·

(7.3.53)

 

 

 

8

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

R5

 

 

 

 

 

 

 

 

R5

 

 

 

 

Hence we can write:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G x x =

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.3.54)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

xk xk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.3.55)

 

 

 

 

 

 

 

R3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

3xk x

 

 

x

 

2δk

 

x

k x

(7.3.56)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 2

 

k,

 

 

 

 

 

 

 

%

 

 

%

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%

 

 

%

 

 

 

 

 

 

 

 

 

 

 

 

 

+ · · ·

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.3.57)

The first three lines in the above equation respectively define:

(a)the monopole moment,

(b)the dipole moment,

(c)the quadrupole moment.

To see this let us reconsider the general solution of the potential problem in Newtonian theory provided by (7.2.15) and let us insert into it the development (7.3.54) of the kernel. We obtain:

 

 

V (x)

= −

 

Gρ(x )

 

d3x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

x

x

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GM

 

 

G

 

 

 

 

 

 

 

 

 

 

 

xk Dk

 

(7.3.58)

 

 

 

= −

 

R

 

 

R

3

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

xk x Qk

+ · · ·

(7.3.59)

 

 

 

5

 

 

 

2R

k,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

d3x ρ(x )

mass

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dk =

d3x xk ρ(x )

 

 

dipole

 

 

(7.3.60)

Qk =

d3x 3xk x %x

%2δk ρ x

quadrupole

 

 

 

 

 

 

 

 

 

 

%

%

 

 

 

 

 

 

294

7 Gravitational Waves and the Binary Pulsars

Fig. 7.10 The radiation region

Equipped with this lore let us return to the case of our relativistic wave. We expand the phase factor according to:

exp iω x

x

% =

exp iωR

iω x · x

+

O

1

 

(7.3.61)

R2

 

%

 

 

R2

 

 

 

 

%

 

 

%

 

 

 

 

 

 

 

 

Next we define the radiation zone by means of the following two inequalities:

ωR - 1; ω|x | 1

(7.3.62)

namely the distance is very large compared to the wave-length and the extension of the source is small compared to the wave-length (see Fig. 7.10).

In the radiation region, which is the region far a way from the source, the phase factor can be well approximated by exp[iωR] and put out of the integral. Correspondingly we get:

γij (ω, x)

= −

4G

exp[iωR]

 

d3x Tij

ω, x

(7.3.63)

 

 

 

R

 

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]