Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FREGRAVOL1.pdf
Скачиваний:
71
Добавлен:
05.06.2015
Размер:
5.17 Mб
Скачать

7.3 Emission of Gravitational Waves

 

 

 

 

 

 

295

Using the conservation of the stress energy tensor μTμν = 0 we rewrite:

 

 

d3x Tij ω, x =

,k (Tkj xi ) k Tkj xi -

(7.3.64)

 

= −

iω

d3x T0j xi

 

 

(7.3.65)

 

 

 

 

 

 

 

 

 

= −

i

ω

 

d3x (T0j xi

+

T0i xj )

(7.3.66)

 

 

 

2

 

 

 

 

The first term in the second line is dropped because it is a total derivative, the third line corresponds to the explicit symmetrization of the result due to the symmetry of γij . Applying the previous procedure a second time we obtain:

 

d3x Tij

ω, x

= −

ω2

d

3x T00x

x

 

(7.3.67)

 

 

 

2

 

 

i

j

 

In addition if we impose that the perturbation γij should be traceless in the 3- dimensional sense we get the semifinal formula:

γij (ω, x) = −

2

2

eiωR

Qij (ω)

 

 

 

 

(7.3.68)

3

R

 

 

 

 

Qij (ω)

=

 

d3x T00(ω, x ) 3x

x

 

%

x

2δij

(7.3.69)

 

 

 

 

 

 

i

j

%

 

 

 

 

 

 

 

 

 

 

 

%

%

 

 

Undoing the time Fourier transform we can also write:

γij (t, x) =

2 1 2

(7.3.70)

3 G R ∂t2 Qij (t)

where, by comparison with (7.3.54), Qij (t) is recognized to be the time dependent quadrupole moment.

7.3.4 Energy Loss by Quadrupole Radiation

When we calculated the stress-energy tensor of the plane wave we expressed it in terms of the following quadratic form:

˙

+

 

≡ ˙

 

+

4

˙

− ˙

 

 

(a)2

 

(b)2

23

)2

 

1

22

γ

33

)2

(7.3.71)

 

 

 

 

 

˙

 

 

 

 

 

 

 

 

We focus on the structure of such an expression. Given a symmetric traceless tensor in three dimensions

Kij = Kj i ; Khh = 0; i, j, h = 1, 2, 3

(7.3.72)

296

7 Gravitational Waves and the Binary Pulsars

Fig. 7.11 Integration on the solid angle. The unit vector n singles out the infinitesimal solid angle around its direction

we look for an SO(3) invariant way of rewriting the tensor combination appearing in (7.3.71), namely:

U (K23)2 +

1

(K22

K33)2

(7.3.73)

4

This can be done in terms of a unit vector:

ni = (1, 0, 0)

(7.3.74)

whose physical meaning is that of propagation axis of the considered gravitational plane wave.

We begin with some identities:

 

 

 

1

Kij Kij

=

1

K112 + K222 + K232 + 2K122 + 2K132 + 2K232

(7.3.75)

 

 

 

 

 

 

 

 

2

2

Kij ni K j n

= − K112 + K122 + K132

(7.3.76)

 

1

Kij ni nj

2

=

1

K112

(7.3.77)

 

4

 

 

4

Hence we conclude that:

U =

1

Kij Kij

1

Ki Kik n nk +

1

Kij ni nj 2

(7.3.78)

2

2

4

Using this result in our expression for the stress-energy tensor of a plane wave traveling in the n direction we are in a position to write down the energy radiated away per unit time and per unit solid angle by gravitational emission. Indeed in a solid angle unit around the direction n we have (see Fig. 7.11):

dE

=

A

 

1

Kij Kij

 

1

Ki Kik n nk

(7.3.79)

dt dΩ

2

2

 

 

 

 

 

 

 

+

4

 

 

 

 

2

 

 

 

 

 

 

1

 

 

Kij ni nj

 

(7.3.80)

 

 

 

 

 

 

 

 

 

where A is a multiplicative constant that we will fix later by comparison with our previous results.

7.3 Emission of Gravitational Waves

 

 

 

 

 

 

 

 

 

 

 

297

7.3.4.1 Integration on Solid Angles

 

 

 

 

 

 

 

 

 

 

We rely on the orthogonality of spherical harmonics:

 

 

 

 

 

 

 

 

1

 

dΩ ni nj

=

 

1

 

sin θ dθ dφ ni nj

 

(7.3.81)

 

 

 

 

 

 

 

 

 

 

4π

 

 

4π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1

δij

 

 

 

 

 

(7.3.82)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

which immediately follows from:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n1 = cos θ

 

 

 

 

 

(7.3.83)

 

 

 

 

 

 

 

n2 = sin θ cos φ

 

 

 

 

(7.3.84)

 

 

 

 

 

 

 

n3 = sin θ sin φ

 

 

 

 

(7.3.85)

Similarly we have:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

dΩ nk n nmnr

=

const δk δmr

+

δkmδ r

+

δkr δ m

(7.3.86)

 

 

4π

 

 

 

 

 

 

 

 

 

 

 

 

The constant can be immediately fixed by taking the trace = k and comparing with the previous result:

 

 

 

1

 

dΩ nmnr

 

 

 

 

5 const δmr

 

 

 

 

const

 

1

 

(7.3.87)

 

 

4π

=

= 15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence integrating on the solid angles we get:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dE

 

 

A

dE

 

 

 

 

 

 

 

4πA

1

 

 

1

 

2

 

Kij Kij

(7.3.88)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

=

 

 

 

 

 

=

2

 

3

+ 15

·

4

 

 

 

 

 

 

dt dΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4πA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.3.89)

 

 

 

 

 

 

Kij Kij

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recalling the normalization of the energy density in the n-th direction:

 

 

 

 

 

 

 

 

 

 

 

t0i

ni

 

= −

1

 

a2

 

b2

 

 

 

 

 

 

 

(7.3.90)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙

+ ˙

 

 

 

 

 

 

and the normalization of the solution for the metric perturbation:

 

 

 

 

 

 

 

 

 

 

 

 

γij =

1 2

 

2Qij

 

 

 

 

 

 

 

 

(7.3.91)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

3

 

∂t2

 

 

 

 

 

 

 

 

 

we obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dE

 

 

1

 

 

 

1

 

 

4

G2

<

1

 

3Qij

2

 

 

 

=R2

(7.3.92)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

dt dΩ = 16πG R2 9

 

 

 

 

 

 

 

 

 

 

∂t3

+ · · ·

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]