Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FREGRAVOL1.pdf
Скачиваний:
71
Добавлен:
05.06.2015
Размер:
5.17 Mб
Скачать

7.4 Quadruple Radiation from the Binary Pulsar System

301

Let us make a numerical comparison between the binary system case and the perihelion advance of mercury where:

 

Δϕ

 

3

[GMS ]3/2

1

(7.4.13)

 

 

aM5/2(1 eM2 )

 

T

Merc =

 

c2

 

MS being the solar mass and aM , eM the geometrical parameters of Mercury orbit, while aBS, eBS are those of the binary star system.

Defining the dimensionless factors:

 

 

 

x

=

 

1 + μ2)

 

 

 

(7.4.14)

 

 

 

 

 

 

 

 

 

 

 

 

 

MS

 

 

 

 

 

 

 

 

y =

aM

 

 

 

 

(7.4.15)

 

 

 

aBS

 

 

 

 

 

 

 

 

z

=

 

1 eM2

 

 

(7.4.16)

 

 

 

1 eBS2

 

 

 

 

 

 

 

 

 

 

 

we obtain the relation

 

 

 

 

 

 

 

 

 

 

 

 

Δϕ

 

BS =

y5/2x3/2z

Δϕ

 

(7.4.17)

 

 

 

T

 

 

 

 

 

 

T Merc

 

Numerically we have:

 

 

 

 

 

 

 

 

 

 

 

z = 1.547

 

y = 28.46

 

 

x = 2.8275

(7.4.18)

and hence the factor

 

 

 

 

 

 

 

 

 

 

 

 

f = y5/2x3/2z 31782

(7.4.19)

While for mercury the angular advance is

 

 

 

 

 

 

 

 

 

42 /century

 

 

 

 

(7.4.20)

for the pulsar binary system we get:

 

 

 

 

 

 

 

 

 

 

 

Δϕ 3.7 deg/year

(7.4.21)

As we see the overwhelming contribution to this enhancement is due to the narrowness of the system, namely the ratio between the semilati recti.

7.4.2 Shrinking of the Orbit and Gravitational Waves

We have indirect evidence of the emission of gravitational waves from the decrease of the period T and the consequent shrinking of the orbit, namely the decrease of the semilatus rectum. From (7.4.6), by taking a time derivative, we obtain

302

7 Gravitational Waves and the Binary Pulsars

Fig. 7.14 The decrease in the period and the shrinking of the orbit for the pulsar binary system PRS1913+16

da = μ1μ2 dE

dt 2E2 dt

(7.4.22)

so that a shrinking of the orbit, corresponds to a decrease of the system energy. Such energy is radiated away in the form of gravitational waves. It is extremely interesting to perform an accurate calculation of such of energy loss by quadrupole radiation in order to compare with experimental data on the reduction of the period (see Fig. 7.14).

7.4.2.1 Calculation of the Moment of Inertia Tensor

We consider Fig. 7.15 and calling r the vector joining one of the two stars with the other we can write:

r1 =

μ2

 

μ1

 

 

r;

r2 =

μ1 + μ2 r

(7.4.23)

μ1 + μ2

where, according to Kepler laws and the Newtonian solution of the dynamical problem we have:

r r

 

a(1 e2)

(7.4.24)

 

 

≡ | | =

1

+

e cos θ

 

 

 

Then we define the moment of inertia according to:

Ik

 

ρ(x)xk x

=

μ1rk

, r

+

μ2rk

, r

 

 

 

 

 

1

1

2

2

 

 

 

 

μ1μ2

 

 

 

 

 

 

 

=

 

 

rk r

 

 

 

 

 

(7.4.25)

 

 

μ1 + μ2

 

 

 

 

 

Then turning to polar coordinates:

r1 x = r cos θ ; r2 y = r sin θ ; r3 z = 0

(7.4.26)

7.4 Quadruple Radiation from the Binary Pulsar System

303

Fig. 7.15 The vectors defining the position of the two stars with respect to their center of mass

we obtain:

Ixx =

μ1μ2

2 cos2 θ

 

r

μ1 + μ2

Iyy =

μ1μ2

2 sin2 θ

 

r

μ1 + μ2

Ixy =

μ1μ2

2 sin θ cos θ

 

r

μ1 + μ2

TrI =

μ1μ2

2

 

r

μ1 + μ2

 

The angular momentum, on the other hand is:

=

 

μ1μ2

 

2θ

μ1 + μ2 r

˙

(7.4.27)

(7.4.28)

Recalling the relation between the angular momentum , the energy E and the geometrical parameters of the orbit a and e, displayed in (7.4.6) by comparison with (7.4.28), we obtain:

 

 

1

 

 

 

 

 

 

 

 

 

θ

 

1

+

μ2) 1

e2

aG

 

 

˙ = r2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.4.29)

r

e sin θ

9

 

μ1 + μ2

G

 

 

 

 

 

 

 

 

˙ =

 

 

 

 

 

 

a(1 e2)

 

 

 

This information suffices to calculate the third derivative of the inertia tensor which, turning to natural units where G = c = 1, takes the following form:

d3Ixx

=

2

 

 

μ1μ2

 

2 sin 2θ

+

3e cos2

 

 

θ

 

 

 

dt3

a(1 e2)

 

 

 

 

 

 

 

 

 

 

 

θ sin θ ˙

 

 

 

d3Iyy

= −

2

μ1μ2

 

2 sin 2θ

+

3e cos2

θ sin θ

 

θ

 

 

 

 

e2)

 

 

dt3

 

a(1

 

 

 

 

 

 

 

+ e sin θ ˙

(7.4.30)

d3Ixy

= −

2

μ1μ2

 

2 cos 2θ

e cos θ

+

3e cos3

θ

 

dt3

a(1 e2)

 

 

 

 

 

 

 

 

 

θ ˙

 

 

d3I

 

 

 

 

μ1μ2

 

e sin

θ

 

 

 

 

 

 

 

 

 

dt3

= −2 a(1

 

e2)

 

 

 

 

 

 

 

 

 

 

θ

˙

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

304 7 Gravitational Waves and the Binary Pulsars

The quadrupole moment Qij is related to moment of inertia by a very simple relation:

 

=

 

3

 

 

 

Qij

 

3 Iij

 

1

δij I

 

(7.4.31)

 

 

 

so that by means of the above results we can immediately calculate its third derivative. The relevant squared modulus appearing in the Einstein formula (7.3.94) is then easily obtained:

... ...

 

1

...

 

... ...

 

1

...

 

 

Q

Qij

=

I

2

+

2 I

2

+

I

2

I 2

 

(7.4.32)

9

 

 

 

3

ij

 

 

xx

 

xy

 

yy

 

 

 

and in natural units G = c = 1, we obtain:

 

dE

 

1

...

 

2

2

 

 

 

 

 

 

 

 

 

 

 

=

Q

2

8μ1

μ2

 

12(1

+

e cos θ )2

 

2

2

θ

2

 

dt

45

ij | =

15a2(1 e2)2

 

+ e

 

sin

 

(7.4.33)

|

 

 

 

θ ˙

 

We can average the energy loss over one revolution period defining:

> dE ?

= −

1 2π dE dθ

 

 

 

 

 

 

 

dt

T

0

dt θ

 

 

 

 

 

 

 

˙

With straightforward algebra we obtain:

 

1 dE

=

 

8μ12μ22

 

 

 

 

+

e cos θ )

2

+

2

2

˙

 

 

 

 

 

 

 

 

 

e

 

θ dt

 

15a2(1 e2)2

 

 

 

 

˙

 

 

 

12(1

 

 

 

 

sin θ θ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32μ12μ22

 

 

 

 

 

 

where

 

 

 

 

 

=

 

 

μ1

+

μ2f (θ, e)

 

 

 

 

 

 

 

7

 

 

 

 

 

 

5(a(1 e2)) 2

 

 

 

 

 

 

1

 

 

 

f (θ, e)

(1 + e cos θ )2 (1 + e cos θ )2 +

 

 

 

 

12 e2 sin2 θ

(7.4.34)

(7.4.35)

Using Kepler third law we can express the period of revolution in terms of the semilatus rectum:

3

T = √ 2π a 2 (7.4.36)

μ1 + μ2

which, inserted in (7.4.34), yields

>

dE

?

=

32

 

μ12μ22

 

1

+

μ2)

1

 

1

2π f (θ, e)

(7.4.37)

 

5

 

 

 

 

a5 2π

dt

1

e2

7

 

 

0

 

 

 

 

 

 

2

 

 

 

 

 

 

 

The integral appearing in (7.4.37) is easily evaluated and one obtains the following final expression for the average energy loss during each revolution (still written in natural units G = c = 1):

7.4 Quadruple Radiation from the Binary Pulsar System

305

>?

dE

=

32 1

μ12μ221

+ μ2)f(e)

(7.4.38)

 

dt

5

 

a5

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(e)

 

1

 

1

+

 

73

e2

+

37

e4

 

(7.4.39)

 

 

1

24

96

 

 

 

(1 e2) 2

 

 

 

 

 

 

From (7.4.4), relating the semilatus rectum to the energy of the orbit, we work out:

 

 

> da

?

 

 

 

 

a2 > dE

?

 

 

 

T = −

 

 

 

 

dt

μ1μ2 dt T

and from Kepler’s third law we get:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙

 

˙

 

 

 

 

 

 

 

 

T

 

=

3 a

 

 

 

 

 

 

 

 

T

2 a

 

so that

 

 

 

 

 

 

 

 

 

 

 

 

 

˙

 

 

1

 

2

2

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

= −

 

μ1μ21 + μ2)f(e)

 

T

a4

(7.4.40)

(7.4.41)

(7.4.42)

Using once again Kepler’s third law to express the semilatus rectum in terms of the period and reinstalling the fundamental constants by means of dimensional analysis, we obtain the final expression for the derivative of the period as a function of the period, the masses of the two stars composing the system and the eccentricity. We have:

 

T

 

 

1

 

 

 

 

 

 

 

 

 

 

= − T 3

 

 

 

·

 

 

·

 

 

˙

u(G, c)

g1

, μ2)

f(e)

 

 

 

5

 

 

 

 

 

 

96

 

 

 

 

 

5

 

 

 

u(G, c)

= −

 

1 G 3

 

 

(7.4.43)

 

 

 

 

 

 

 

 

 

5 (2π ) 83 c5

 

 

 

 

 

 

 

g1

, μ2)

 

 

μ1μ2

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

= 1 + μ2) 3

 

 

 

 

 

If we insert in this formula the data of the binary pulsar system PSR1913+16, recalled in Table 7.1, we obtain the following theoretical value for the time derivative of the revolution period:

˙

= −

2.435

×

1012

(7.4.44)

Ttheor

 

 

which is to be compared with the measured experimental value:

T

(

2.30

±

0.22)

×

1012

(7.4.45)

˙exp =

 

 

 

 

The incredible good agreement between the theoretical and experimental values is an indirect strong evidence of the emission of gravitational waves.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]