Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FREGRAVOL1.pdf
Скачиваний:
71
Добавлен:
05.06.2015
Размер:
5.17 Mб
Скачать

4.3 The Orbit Equations of a Massive Particle

165

Hence the first equation of (4.3.9) can also be rewritten as follows:

1

 

dr

2

 

L2

 

m

 

L2m

 

E 2 1

(4.3.10)

2

 

+

2r2 r

r3

=

2

 

 

Equation (4.3.10) can be compared with the equation for energy conservation in the motion of a test particle of mass μ in the Newtonian field generated by a large mass M (see (4.2.1)). For motions that are sufficiently slow, we can identify:

dτ c dt

(4.3.11)

 

 

speed of light

so that, multiplying (4.3.10) by μ, we can rewrite it in the following way:

 

mμc2

+

1

μ

dr

2

 

 

1 L2c2μ

 

c2L2

 

(E 2

1)c2μ

(4.3.12)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

3

 

 

 

 

 

 

r

 

 

 

2

 

 

dt

 

 

+ 2

 

 

r

 

 

 

r

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

Furthermore, if the term c2L2is much smaller than the other terms:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c2L2

1 L2c2μ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r2

 

 

 

 

 

 

 

 

(4.3.13)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r3

 

 

2

 

 

 

 

 

 

 

 

 

then we can make the identifications:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L2c2μ

2

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

μ

 

 

 

μc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

2

= GMμ

 

 

m =

GM

 

(4.3.14)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E 2 1

c2μ

 

E

 

 

 

 

E

2

 

2E + μc2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

μc2

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m = GMc2

 

= Schwarzschild emiradius

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

μc

 

 

 

 

angular momentum per unit mass per speed of light

(4.3.15)

 

 

=

 

 

+

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2 μcE2

total energy in rest mass units

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This comparison with the Newtonian theory suggests the following bifurcation:

E

< 1

bound state

 

closed orbit

(4.3.16)

E

> 1

unbound state

 

open orbit

 

4.3.1 Extrema of the Effective Potential and Circular Orbits

By means of (4.3.9) the problem of massive particle orbits in the Schwarzschild geometry has been formally reduced to the problem of classical motions in a central

166

4 Motion in the Schwarzschild Field

potential. Hence, just as in classical Newtonian mechanics we have to study the extrema of the effective potential (4.3.9) in order to establish the conditions for stable and unstable circular orbits. Indeed if an orbit is circular we have dr = 0 and the radius r = r0 must be a root of the equation Veff (r) = E . The orbit will be stable if r0 is a minimum of the effective potential Veff , while it will be unstable if it is a maximum. Equating to zero the first derivative of Veff we obtain:

 

∂Veff

 

m

 

 

L2

mL2

 

0 =

 

 

=

 

 

2

2r3 + 3

 

 

 

 

(4.3.17)

∂r

 

r2

r4

 

with solutions:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L2 ±

 

 

 

 

r

 

L2(L2 12m)

(4.3.18)

 

 

 

 

 

 

± =

 

 

 

 

2m

 

 

 

 

 

and considering the discriminant = L2(L2 12m) we conclude that for

 

 

 

 

L2 < 12m2

 

 

 

 

(4.3.19)

there are no extrema and consequently no stable orbits. Reinstalling physical units the stability bound (4.3.19) translates into:

r2

 

< 12

GM

 

(4.3.20)

dt

c

 

 

 

 

 

 

 

 

 

In the case of test particles orbiting around the sun this means:

 

 

R

2

 

 

 

 

 

GM

 

 

 

 

 

 

 

 

 

 

 

 

 

<

12

 

 

 

6

 

(4.3.21)

 

 

 

 

2π

 

 

c

 

 

T

 

 

 

 

 

 

where T and R are the period and radius of the orbit, respectively, and M6 denotes the mass of the sun. Inserting the numerical values of these physical constants we find:

GM6

=

(6.670 cm3 s2 g1)

 

4.43

·

10

15

cm2

 

 

 

 

·

 

 

10

 

 

 

 

1

 

 

 

 

 

 

 

c

2.998

10

 

 

cm s

 

 

=

 

 

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

 

1 s =

1 year

 

 

= 3.1536 · 107 years

 

 

 

 

 

 

 

 

 

 

 

 

 

31, 536, 000

(4.3.22)

 

 

 

1 km

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 cm2 =

 

= 1010 km2

 

 

 

 

 

 

 

 

 

 

1010

 

 

 

 

 

 

 

 

 

 

1

cm2

=

1

 

 

 

·

103

 

km2

 

0.317

·

103

km2

 

s

3.1536

 

year

 

 

 

 

 

· year =

 

 

 

 

 

Therefore the critical limit in the solar system is given by:

R2

1.7 · 104

km2

(4.3.23)

T

year

4.3 The Orbit Equations of a Massive Particle

167

It is instructive to compare condition (4.3.23) with the actual values of planetary radii or periods. The period of a planet is of the order of the year. Hence to be critical the radius of the orbit should be of the order of 102 km while, as we know, the typical distance of a planet from the sun is of the order of 108 km. Alternatively keeping the distance fixed, for instance inserting the average radius of the Earth orbit around the Sun:

r = 1.49 × 108 km

(4.3.24)

we obtain that a critical period for such a orbit would be Tcrit = 1020 years. In other words, in order to be critical, the Earth should be so slow as to make a full revolution in a time ten orders of magnitude longer than the age of the Universe

TUniverse 1010 years.

These numerical considerations give some appreciation of how far the solar system is from the critical phenomena implied by general relativity and explain why Newtonian mechanics works so well for the physical system it was invented to explain. Notwithstanding this smallness, the critical region is by no means irrelevant in astrophysical systems. Indeed, as we are going to see, it becomes quite important near compact stars whose mass is of the order of a stellar mass M6 but whose radius is of the order of the kilometer.

Minimum and Maximum The second derivative of the potential yields:

 

5 d2Veff

2

 

 

 

2

 

 

2

 

 

r

 

 

 

= 3L

r

12mL

 

2mr

 

J (r)

(4.3.25)

 

dr2

 

 

Inserting the values r± given in (4.3.18) we find:

 

 

 

 

 

J (r+) > 0

 

r+ is a minimum

(4.3.26)

 

 

J (r) < 0

 

ris a maximum

 

 

 

Explicitly we have:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L2 +

 

> 6m

 

 

 

r

L2(L2 12m2)

(4.3.27)

 

 

 

 

 

+ =

 

 

 

2m

 

 

 

 

 

 

The important conclusion that we reach from (4.3.27) is that stable orbits exist only for radii r > 6m. In the case of the Sun the numerical value of the Schwarzschild emiradius reads:

 

 

 

GM6

 

 

 

 

m6 =

 

c2

1.48 km

 

 

(4.3.28)

For L2 = 12m2 we have r= 6m while the limit of rfor L2 → ∞ is:

 

 

 

L2

 

 

 

 

lim r

lim

L2(L2 12m2)

=

3m

(4.3.29)

 

2m

L2→∞

= L2→∞

 

 

 

 

 

168

4 Motion in the Schwarzschild Field

Fig. 4.6 Schwarzschild geometry: Plot of the

effective radial potential for= 1 L2 = 12m2. This is

the limiting case where no circular orbits are available. Indeed the potential has no extrema

Fig. 4.7 Schwarzschild geometry: Plot of the

effectivepotential for= 2 L2 = 24m2.

In this case the stable minimum ofthe potential is at r+ = 6(2+ 2)m = 20.4853m, while the unstable

maximum isat

r= 6(22)m = 3.51472m

It follows that the range of the root ris:

3m < r< 6m

(4.3.30)

and that is the range where unstable circular orbits are present.

In view of this analysis it is convenient to define the following dimensionless variables:

ρ = r m

(4.3.31)

= √ L

12m

and rewrite the effective potential (4.3.9) in terms of these:

Veff =

1

1

+

6 2

12 2

(4.3.32)

2

ρ

ρ2

ρ3

The structure of the effective potential can be visualized by means of some plots. In Fig. 4.6 we display the limiting case L2 = 12m2 which admits no circular orbits. The reason is evident from the shape. In this case the potential has neither minima nor maxima. It just decreases from infinity towards infinitely large negative values

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]