Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Зебрев Физические основы кремниевой 2008.pdf
Скачиваний:
161
Добавлен:
16.08.2013
Размер:
5.66 Mб
Скачать

стях границы раздела со скрытым окислом. Другим источником деградации подвижности в канале КНИ транзисторов с ультратонкими базами является технологическое загрязнение кремниевой пленки неконтролируемыми примесями при изготовлении. Более того, для транзисторов с малым объемом активной области даже случайные флуктуации количества атомов легирующей примеси в базе могут приводить к недопустимому разбросу индивидуальных значений порогового напряжения и проводимости, а также уменьшению подвижности отдельного транзистора. По этим причинам база полностью обедненного КНИ транзистора в идеале должна быть вообще не легирована примесями, что технологически является трудновыполнимой задачей.

8.10. Сравнение полностью и частично обедненных КНИ МОПТ

Традиционно считается, что наиболее перспективными являются КНИ структуры с полным обеднением. Такая технология обеспечивает наилучшие характеристики приборов (отсутствие эффектов плавающего тела, более крутой подпороговый наклон, минимизация короткоканальных эффектов и паразитных емкостей) и считается наиболее приемлемой в диапазоне длин канала менее 100 нм. Тем не менее, полностью обедненные КНИ МОПТ существенно менее технологичны и более трудны для изготовления. Например, пороговое напряжение ПО КНИ МОПТ очень чувствительно к толщине кремниевой базы, а поддержание постоянства толщины базы является трудной технологической задачей.

Преимущество полностью обедненных приборов над частично обедненными в части электростатического качества и отсутствия короткоканальных эффектов также не столь бесспорно. Например, из-за отсутствия квазинейтральной области в полностью обедненных КНИ МОПТ существует электростатическая связь стока с затвором через скрытый окисел (рис. 8.14).

204

Рис. 8.14. Иллюстрация дополнительной электрической связи стока ПО КНИ МОПТ с затвором через силовые линии электрического поля, проходящие через скрытый окисел

Это обстоятельство ухудшает электростатическое качество МОПТ полностью обедненного типа и усиливает короткоканальные эффекты. В частности, это касается относительного изменения порогового напряжения от длины канала (рис. 8.15).

Уменьшение абсолютной величины спадания порогового напряжения как функции длины канала для полностью обедненных приборов на рис. 8.15 обусловлено только уменьшением глубины залегания переходов стока и истока.

Рис. 8.15. Типичный вид зависимостей порогового напряжения от длины затвора для полностью обедненных КНИ МОПТ и толщины базы к толщине скрытого окисла (в нм) по сравнению с частично обедненными КНИ МОПТ (верхняя кривая)

205

Относительное изменение порогового напряжения в полностью обедненных приборах оказывается более выраженным. Преимущества и недостатки разных КНИ технологий сведены в табл. 8.1.

Таблица 8.1

Преимущества и недостатки частично и полностью обедненных КНИ МОПТ

ПО КНИ МОПТ

ЧО КНИ МОПТ

 

 

 

 

Лучший

подпороговый

размах

Простота изготовления (+)

(~ 60 мВ/дек) (+)

 

 

Отсутствие

эффектов плавающего

Отсутствие электростатической связи с

потенциала (+)

 

подложкой (+)

 

 

Объемная инверсия (+)

 

Эффекты плавающего потенциала тела (–)

Зависимость от высокой

точности

Переходные эффекты, зависящие от пре-

задания толщины базы (–)

 

дыстории (–)

Хуже электростатика (–)

 

Паразитный биполярный эффект (–)

Ранний пробой (–)

 

Простота контроля порогового напряже-

Заметнее эффекты разогрева (–)

ния (+)

 

 

 

 

В настоящее время развитие технологий частичного и полного обеднения идет параллельными курсами. Фирма IBM поддерживает технологии частичного обеднения, фирма Intel развивает технологии с полным обеднением.

8.11. Технологии многозатворных МОПТ

Технология КНИ является естественным шагом для перехода от чисто планарного принципа интеграции к объемной интеграции. Одна из главных целей объемной интеграции, – подавление геометрических короткоканальных эффектов – реализуется в технологиях многозатворных МОПТ. На рис. 8.16 изображены несколько перспективных многозатворных конфигураций МОПТ.

206

Рис. 8.16. Структуры КНИ многозатворных (multiple gate) транзисторов: (А) планарный транзистор с двойным затвором; (Б) FinFET; (В) тройной (П-затвор); (Г) круговой затвор

Особенностью таких структур является высокое электростатическое качество и высокая степень управляемости заряда в канале. Идеальным в этом смысле является транзистор с круговым затвором, он же является наиболее сложным технологически. Транзисторы с тройным (П-образным или Ω-образным) затвором и так называемый FinFET вполне совместимы с уже существующей технологией изготовления и уже частично реализованы в 45 нм техноло-

гии Intel (2007).

Транзистор типа FinFET (от английского слова fin, плавник) представляет собой одну из перспективных объемных конфигураций полевых транзисторов, который может быть реализован в рамках существующих технологий изготовления.

Рис. 8.17. Структура транзистора FinFET

Тонкая кремниевая пластина («плавник») «рассекает» тонкий затвор, который окружает кремний с трех сторон, причем, в отли-

207

чие от транзистора с П-образным затвором, верх пластины отделен от затвора толстым полевым окислом. Ширина канала определяется высотой кремниевого «плавника». Вертикальный двойной затвор обеспечивает высокую управляемость и хороший электростатический контроль заряда в двух каналах.

Транзистор с горизонтальным двойным затвором (ДМОПТ) является самой перспективной в смысле компромисса между электростатическим качеством, а также степени интеграции и сложности изготовления.

Таким образом, преимуществами многозатворных МОПТ являются:

подавление геометрических короткоканальных эффектов; малый статический ток утечки и динамическое потребление; высокое отношение токов в открытом и закрытом состоянии

ION IOFF ;

совместимость с существующими технологиями изготовления; потенциально очень высокая степень интеграции (менее 10 нм). Тем не менее, следует подчеркнуть, что многозатворные непланарные (3D) технологии являются технологиями скорее будущего,

чем настоящего.

208

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]