Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник для углубленного изучения физики.doc
Скачиваний:
3645
Добавлен:
21.03.2015
Размер:
6.5 Mб
Скачать

Туннельный микроскоп

Саму идею туннельного микроскопа понять не очень сложно. Изготовляется чрезвычайно тонкое вольфрамовое острие-зонд (рис. 2.1), настолько тонкое, что оно заканчивается одним или несколькими атомами. Острие почти вплотную подводится к поверхности проводящего электрический ток вещества. При этом электронные облака атома на кончике острия и ближайшего к нему атома поверхности начнут перекрываться. Если приложить небольшое (порядка 0,01 В) напряжение к поверхности и острию, то в зазоре острие — поверхность появится слабый ток — порядка миллиардных долей ампера. Этот ток называется туннельным. (Его появление объясняется с помощью квантового эффекта, называемого туннельным.) Туннельный ток чрезвычайно сильно зависит от расстояния между зондом и поверхностью. При изменении расстояния на 2·10-8см (примерно на размер атома) сила тока изменяется в тысячи раз.

Рис. 2.1

Если острие перемещать вдоль поверхности, то сила тока должна меняться в очень широких пределах, увеличиваясь при прохождении зонда над атомом и уменьшаясь до ничтожных значений, когда зонд зависает над промежутком между атомами поверхности. Это очень неудобно для регистрирующей ток системы, не говоря уже о том, что острие может просто зацепиться за неровность недостаточно тщательно отшлифованной поверхности. Чтобы избежать этого, используют следующий прием: специальное устройство перемещает зонд по вертикали таким образом, чтобы протекающий через прибор ток оставался неизменным. Это достигается с помощью устройства обратной связи, которое улавливает изменение силы тока и дает команду приблизить зонд к поверхности или удалить от нее.

Основная проблема состоит в том, чтобы зонд перемещать контролируемым образом на расстояния в миллиардные доли метра (~1 нм). Это достигается с помощью так называемого пьезоэлектрического манипулятора. Некоторые кристаллы, например кварц, и специальные керамики слегка меняют свои размеры под действием электрического поля. В этом состоит явление пьезоэлектрического эффекта. Электрические поля создаются тонкими металлическими пленками, напыляемыми на поверхность керамики. При изменении напряжения на десятые доли вольта размеры керамических стержней меняются приблизительно на размер атома.

Несложная конструкция из трех взаимно перпендикулярных керамических стержней обеспечивает перемещение острия по всем направлениям (рис. 2.2). Меняющиеся напряжения на стержнях вызывают перемещение острия вдоль параллельных линий, отстоящих друг от друга на заданные расстояния (сканирование). Одновременно происходит перемещение острия по вертикали, обеспечивающее фиксированную силу тока. Полученная информация о перемещениях острия обрабатывается компьютером и подается на принтер (печатающее устройство) или непосредственно на экран дисплея, на котором и получается изображение атомов на поверхности образца. На рисунке 2.3 показано изображение поверхности графита, полученное в лаборатории кафедры квантовой радиофизики МГУ в 1991 г.

Рис. 2.2

Рис. 2.3

С помощью туннельного микроскопа можно не только получать атомное изображение поверхности, но и перемещать по ней атомы в произвольном направлении. Для этого на очищенную поверхность кристалла никеля напыляют небольшое количество атомов ксенона. Поверхность охлаждается до -269 °С, чтобы исключить заметные перемещения атомов ксенона вследствие теплового движения. Увеличивая напряжение между острием и никелевой подложкой, можно зацепить на острие отдельный атом ксенона и перенести его в нужном направлении. Уменьшив затем напряжение, можно отцепить атом и поместить его в любом месте. На рисунке 2.4, сделанном с экрана дисплея, вы видите название фирмы IBM, «написанное» 35 атомами ксенона. Размещение отдельных атомов в заданных местах открывает фантастические возможности создания хранилищ информации на атомном уровне. Это уже предел «миниатюризации» хранилищ информации.

Рис. 2.4