Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник для углубленного изучения физики.doc
Скачиваний:
3644
Добавлен:
21.03.2015
Размер:
6.5 Mб
Скачать

Дислокации

Гораздо большее влияние на свойства кристаллов оказывают линейные дефекты, при которых нарушения структуры сосредоточены вблизи протяженных линий. Такие дефекты называют дислокациями (от позднелатинского слова dislocatio — смещение).

Различают две основные дислокации — краевую и винтовую*.

* В реальных условиях дислокация обычно представляет собой сочетание этих двух видов.

Краевая дислокация схематически показана на рисунке 8.21. Атомные плоскости (атомные слои) часто (например, в процессе роста кристалла) обрываются внутри кристалла. В результате образуется «лишняя» полуплоскость. Искажение, как видно из рисунка, сосредоточено в основном вблизи нижнего края полуплоскости «лишних» атомов. Под дислокацией здесь понимают линию, проходящую вдоль края «лишней» атомной полуплоскости.

Рис. 8.21

На расстоянии нескольких атомных диаметров от дислокационной линии искажения настолько малы, что в этих местах кристалл имеет почти совершенную форму. Искажения возле края «лишней» полуплоскости вызваны тем, что ближайшие атомы как бы «пытаются» согласовать свое расположение с резким обрывом «лишней» полуплоскости.

Любая царапинка на поверхности кристалла может стать причиной краевой дислокации. Действительно, царапинку на поверхности кристалла можно рассматривать как нехватку атомной плоскости. В результате теплового движения атомы из соседних областей могут перейти на поверхность, а дислокация тем самым переместится вовнутрь.

Винтовая дислокация

Более сложной является винтовая дислокация. Представим себе рассеченную наполовину кристаллическую решетку, в которой две примыкающие части (блоки) сдвинуты так, что одна часть смещена относительно другой на толщину одного слоя — периода решетки (рис. 8.22). Наибольшие искажения сосредоточены на оси. Область, примыкающая к этой оси, и называется спиральной или винтовой дислокацией.

Рис. 8.22

Почему данная дислокация получила такое название? Кристалл с дислокацией состоит не из параллельных атомных плоскостей, а скорее представляет собой одну плоскость, закрученную в виде винтовой лестницы. Крошечный наблюдатель, совершающий прогулку вокруг оси (см. рис. 8.22), начиная сверху, будет после каждого круга опускаться на один «этаж» ниже по покатой спирали. В данном случае дислокация является правовинтовой, потому что путь по спирали вниз все время поворачивает направо. Существуют и левосторонние дислокации.

Количество дислокаций характеризуется числом дислокационных линий, пересекающих в кристалле элемент поверхности площадью в 1 см2. Это число меняется в широких пределах: от 102—103 см-2 до 1011—1012 см-2.

Выращивание кристаллов без дефектов — очень сложная задача, и она решена только для немногих веществ. Знание условий образования дефектов в кристаллах и способов их устранения имеет большое значение при использовании кристаллических тел (см. § 8.6). Винтовые дислокации играют решающую роль в росте кристаллов.

Рост кристаллов

Природа строит кристалл подобно тому, как каменщик складывает стенку из кирпичей. Из беспорядочной совокупности атомов или молекул жидкости (или газа) выбирается один за другим подходящий «кирпич» и пристраивается упорядоченным образом к строящейся стенке — кристаллу.

Вероятность присоединения атома к кристаллу тем больше, чем с большим количеством атомов он окажется связанным на поверхности кристалла. Если атом оседает на плоскую поверхность, то он будет связан только с одним-двумя атомами этой поверхности. Энергия такой связи мала, и, следовательно, мала вероятность присоединения атома к кристаллу. Тепловое движение препятствует этому.

Иное дело, если на поверхности кристалла имеется ступенька, образованная винтовой дислокацией. Здесь присоединяемый атом окажется связанным с несколькими другими и вероятность присоединения атома к кристаллу будет много больше. Именно благодаря винтовой дислокации при росте кристалла образуются все новые и новые слои путем присоединения атомов к уже имеющейся ступеньке. Дислокация чрезвычайно ускоряет рост кристаллов.

Дислокационная ступенька в результате присоединения новых атомов расширяется на поверхности кристалла. Однако при этом она загибается. Чтобы понять причину этого, рассмотрим цепочку конькобежцев, вращающуюся вокруг одного из концов цепочки. Для сохранения прямой линии конькобежцы на внешнем конце цепочки должны бежать быстрее тех, которые находятся ближе к неподвижному центру вращения. Ведь они обегают окружность большего радиуса.

В случае ступеньки кристалла ее внешний край не застраивается быстрее внутреннего, так как атомы присоединяются к ней в беспорядке с более или менее постоянной скоростью вдоль всей длины ступеньки. В таком случае по мере застройки продвижение внешней части ступеньки вокруг закрепленной оси (линии дислокации) происходит недостаточно быстро и ступенька изгибается, образуя спираль. Постепенное наращивание ступеньки новыми и новыми слоями атомов приводит к тому, что на грани кристалла образуется спиральная башенка. Центральная ее часть как бы ввинчивается в пространство, опережая в своем движении нижние ступеньки лестницы, которые со временем превращаются в завершенные атомные слои. На рисунке 8.23, аг показаны последовательные стадии роста кристалла.

Рис. 8.23

Фотографии, полученные с помощью электронного микроскопа, подтверждают реальность спирального роста кристаллов. На рисунке 8.24 представлена микрофотография спиральных ступенек на поверхности кристалла карбида кремния.

Рис. 8.24

Зарождение кристалла облегчается при наличии в растворе или расплаве мельчайших инородных тел — пылинок и других частиц. В данном случае зародыши кристаллов образуются не путем объединения при случайных столкновениях атомов или молекул, а в результате осаждения атомов на твердых инородных телах, практически всегда присутствующих в расплаве, растворе или газе. Например, зародышами снежинок являются взвешенные в воздухе твердые пылинки, чаще всего мельчайшие кварцевые песчинки. Неправильная форма пылинки, на которой начинается зарождение кристалла, способствует возникновению в нем дислокации и резкому увеличению скорости роста кристалла.

Дефекты в кристаллах бывают точечными или линейными. Особо важное значение имеют линейные дефекты дислокации. Винтовые дислокации определяют скорость роста кристаллов.