Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник для углубленного изучения физики.doc
Скачиваний:
3644
Добавлен:
21.03.2015
Размер:
6.5 Mб
Скачать

§ 5.6. Теплоемкости газа при постоянном объеме и постоянном давлении

При введении понятия теплоемкости мы не обращали внимание на одно существенное обстоятельство: теплоемкости зависят не только от свойств вещества, но и от процесса, при котором осуществляется теплопередача.

Если нагревать тело при постоянном давлении, то оно будет расширяться и совершать работу. Для нагревания тела на 1 К при постоянном давлении ему нужно передать большее количество теплоты, чем при таком же нагревании при постоянном объеме.

Жидкие и твердые тела расширяются при нагревании незначительно, и их теплоемкости при постоянном объеме и постоянном давлении мало различаются. Но для газов это различие существенно. С помощью первого закона термодинамики можно найти связь между теплоемкостями газа при постоянном объеме и постоянном давлении.

Теплоемкость газа при постоянном объеме Найдем молярную теплоемкость газа при постоянном объеме. Согласно определению теплоемкости

где ΔT — изменение температуры. Если процесс происходит при постоянном объеме, то эту теплоемкость обозначим через Cv. Тогда

(5.6.1)

При постоянном объеме работа не совершается. Поэтому первый закон термодинамики запишется так:

(5.6.2)

Изменение энергии одного моля достаточно разреженного (идеального) одноатомного газа равно: (см. § 4.8).

Следовательно, молярная теплоемкость при постоянном объеме одноатомного газа равна:

(5.6.3)

Теплоемкость газа при постоянном давлении

Согласно определению теплоемкости при постоянном давлении Ср

(5.6.4)

Работа, которую совершит 1 моль идеального газа, расширяющегося при постоянном давлении, равна:

(5.6.5)

* Из формулы (5.6.5) видно, что универсальная газовая постоянная численно равна работе, которую совершает 1 моль идеального газа при постоянном давлении, если температура его увеличивается на 1К.

Это следует из выражения для работы газа при постоянном давлении А' = pΔV и уравнения состояния (для одного моля) идеального газа pV = RT.

Внутренняя энергия идеального газа от объема не зависит. Поэтому и при постоянном давлении изменение внутренней энергии ΔU = CVΔT, как и при постоянном объеме. Применяя первый закон термодинамики, получим:

(5.6.6)

Следовательно, молярные теплоемкости идеального газа связаны соотношением

(5.6.7)

Впервые эта формула была получена Р. Майером и носит его имя.

В случае идеального одноатомного газа

(5.6.8)

Теплоемкость идеального газа при изотермическом процессе

Можно формально ввести понятие теплоемкости и при изотермическом процессе. Так как при этом процессе внутренняя энергия идеального газа не меняется, какое бы количество теплоты ему ни было передано, то теплоемкость бесконечна.

Молярная теплоемкость идеального газа при постоянном давлении больше теплоемкости при постоянном объеме на величину универсальной газовой постоянной R.

§ 5.7. Адиабатный процесс

Мы рассмотрели изотермический, изобарный и изохорный процессы. После ознакомления с первым законом термодинамики появляется возможность изучить еще один процесс, это процесс, протекающий в системе при отсутствии теплообмена с окружающими телами. (Но работу над окружающими телами система может совершать.)

Процесс в теплоизолированной системе называют адиабатным.

При адиабатном процессе Q = 0 и согласно закону (5.5.3) изменение внутренней энергии происходит только за счет совершения работы:

(5.7.1)

Конечно, нельзя окружить систему оболочкой, абсолютно исключающей теплообмен. Но в ряде случаев реальные процессы очень близки к адиабатным. Существуют оболочки, обладающие малой теплопроводностью, например двойные стенки с вакуумом между ними. Так изготовляются термосы.

Процесс можно считать адиабатным даже без теплоизолирующей оболочки, если он происходит достаточно быстро, т. е. так, чтобы за время процесса не происходило заметного теплообмена между системой и окружающими телами.

Согласно выражению (5.7.1) при совершении над системой положительной работы, например при сжатии газа, внутренняя энергия его увеличивается; газ нагревается. Наоборот, при расширении газ сам совершает положительную работу (А' > 0), но А < 0 и внутренняя энергия его уменьшается; газ охлаждается.

Зависимость давления газа от его объема при адиабатном процессе изображается кривой, называемой адиабатой (рис. 5.9). Адиабата обязательно идет круче изотермы. Ведь при адиабатном процессе давление газа уменьшается не только за счет увеличения объема, как при изотермическом процессе, но и за счет уменьшения его температуры.

Рис. 5.9

Адиабатные процессы широко используются в технике. Они играют немалую роль в природе.

Нагревание воздуха при быстром сжатии нашло применение в двигателях Дизеля. В этих двигателях отсутствуют системы приготовления и зажигания горючей смеси, необходимые для обычных бензиновых двигателей внутреннего сгорания. В цилиндр засасывается не горючая смесь, а атмосферный воздух. К концу такта сжатия в цилиндр с помощью специальной форсунки впрыскивается жидкое топливо (рис. 5.10). К этому моменту температура сжатого воздуха так велика, что горючее воспламеняется.

Рис. 5.10

Так как в двигателе Дизеля сжимается не горючая смесь, а воздух, то степень сжатия у этого двигателя больше, а значит, коэффициент полезного действия (КПД) двигателей Дизеля выше, чем у обычных двигателей внутреннего сгорания. Кроме того, они могут работать на более дешевом низкосортном топливе. Есть, однако, у двигателя Дизеля и недостатки: необходимость высоких степеней сжатия и большое рабочее давление делают эти двигатели массивными и вследствие этого более инерционными — они медленнее набирают мощность. Двигатели Дизеля более сложны в изготовлении и эксплуатации, тем не менее они постепенно вытесняют обычные бензиновые двигатели, используемые в автомобилях.

Охлаждение газа при адиабатном расширении происходит в грандиозных масштабах в атмосфере Земли. Нагретый воздух поднимается вверх и расширяется, так как атмосферное давление падает с высотой. Это расширение сопровождается значительным охлаждением. В результате водяные пары конденсируются и образуются облака.