Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник для углубленного изучения физики.doc
Скачиваний:
3625
Добавлен:
21.03.2015
Размер:
6.5 Mб
Скачать

Жидкости

Молекулы жидкости расположены почти вплотную друг к другу (рис. 2.20), поэтому каждая молекула ведет себя иначе, чем молекула газа. Зажатая, как в клетке, другими молекулами, она совершает «бег на месте» (колеблется около положения равновесия, сталкиваясь с соседними молекулами). Лишь время от времени она совершает «прыжок», прорываясь сквозь «прутья клетки», но тут же попадает в новую «клетку», образованную новыми соседями. Время оседлой жизни молекулы воды, т. е. время колебаний около одного определенного положения равновесия, при комнатной температуре, как показывают расчеты, выполненные с применением законов статистической механики, равно в среднем 10-11 с. Время же, за которое совершается одно колебание, значительно меньше (10-12—10-13с). С повышением температуры время оседлой жизни молекул уменьшается. Характер молекулярного движения в жидкостях, впервые установленный советским физиком Я. И. Френкелем, позволяет понять основные свойства жидкостей.

Рис. 2.20

Френкель Яков Ильич (1894—1952) — выдающийся советский физик-теоретик, внесший значительный вклад в самые различные области физики. Я. И. Френкель — автор современной теории жидкого состояния вещества. Им заложены основы теории ферромагнетизма. Широко известны работы Я. И. Френкеля по атмосферному электричеству и происхождению магнитного поля Земли. Первая количественная теория деления ядер урана создана Я. И. Френкелем.

Молекулы жидкости находятся непосредственно друг возле друга. Поэтому при попытке изменить объем жидкости даже на малую величину начинается деформация самих молекул (рис. 2.21). Для этого нужны очень большие силы. Этим и объясняется малая сжимаемость жидкостей. Понять причину малой сжимаемости жидкости ничуть не сложнее, чем понять, почему так трудно втиснуться в переполненный автобус.

Рис. 2.21

Жидкости, как известно, текучи, т. е. не сохраняют своей формы. Объяснить это можно так. Если жидкость неподвижна, то перескоки молекул из одного «оседлого» положения в другое происходят с одинаковой частотой по всем направлениям (см. рис. 2.20). Наличие внешней силы заметно не изменяет числа перескоков молекул в секунду, но перескоки молекул из одного «оседлого» положения в другое при этом происходят преимущественно в направлении действия внешней силы (рис. 2.22). Вот почему жидкость течет и принимает форму сосуда.

Рис. 2.22

Для течения жидкости необходимо только, чтобы время действия силы было во много раз больше времени «оседлой жизни» молекулы, иначе кратковременная сила вызовет лишь упругую деформацию жидкости, и обычная капля воды поведет себя, как стальной шарик.

Теперь рассмотрим, как связаны средняя кинетическая и средняя потенциальная энергии молекулы жидкости. Каждая молекула жидкости взаимодействует сразу с несколькими соседями. Ограничимся учетом взаимодействия данной молекулы с двумя ближайшими соседями, находящимися примерно на расстоянии 2r0 друг от друга.

Искомую потенциальную кривую можно получить наложением кривой, изображенной на рисунке 2.15, а (парное взаимодействие), на такую же кривую, смещенную относительно первой на расстояние, чуть большее 2r0. Потенциальные энергии складываются, поэтому глубина потенциальной ямы увеличивается почти вдвое, а максимумы энергии уменьшаются (рис. 2.23). Ход потенциальной кривой с учетом взаимодействия с другими молекулами показан на рисунке 2.24.

Рис. 2.23

Рис. 2.24

Для того чтобы молекула не могла покинуть жидкость, ее средняя энергия должна быть отрицательна (< 0). Только в этом случае молекула останется внутри потенциальной ямы, образованной ее соседями. Если > 0, то молекула не удержится внутри жидкости и покинет ее.

Так как < 0, то средняя кинетическая энергия молекулы жидкости меньше абсолютного значения средней потенциальной энергии: < , причем лишь незначительно меньше:

(2.6.2)

Поэтому >> — максимального (по модулю) значения потенциальной энергии. На рисунке 2.24 график средней энергии молекулы изображен отрезком прямой.

Колебания молекулы в потенциальной яме не продолжаются долго. Из-за хаотичности движения молекул их энергия непрерывно меняется и становится то больше, то меньше средней энергии . Как только энергия молекулы превысит высоту потенциальной кривой (высоту потенциального барьера), отделяющей одну яму от другой, молекула перескочит из одного положения равновесия в другое.