Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Normalnaya_fiziologia_ekzamen2021.docx
Скачиваний:
463
Добавлен:
19.07.2021
Размер:
3.11 Mб
Скачать

Морфофункциональная характеристика микроциркуляции. Регуляция кровотока в капиллярах (обменных кровеносных сосудах). Механизм обмена веществ через стенку капилляра.

К микроциркуляторному руслу относят сосуды: распределители капиллярного кровотока (терминальные артериолы, метартериолы, артериовенулярные анастомозы, прекапиллярные сфинктеры) и обменные сосуды (капилляры и посткапиллярные венулы). В месте отхождения капилляров от метартериол имеются одиночные гладкомышечные клетки, получившие функциональное название «прекапиллярные сфинктеры».

В зависимости от ультраструктуры стенки выделяют три типа капилляров: соматический, висцеральный и синусоидный.


Стенка капилляров соматического типа образована сплошным слоем эндотелиальных клеток, в мембране которых огромное количество мельчайших пор, диаметром 4-5нм, характерен для кожи, скелетных и гладких мышц, миокарда, легких.

В капиллярах висцерального типа в мембранах эндотелия имеются фенестры - «окошечки», которые представляют собой пронизывающие цитоплазму отверстия, диаметром 40-60нм, образованные тончайшей мембраной. В почках, кишечнике, эндокринных железах - в органах, в которых всасывается большое количество воды с растворенными в ней веществами.

Капилляры синусоидного типа имеют прерывистую стенку с большими просветами. Эндотелиальные клетки отделены друг от друга щелями, в области которых базальная мембрана отсутствует. Находятся в селезенке, печени, костном мозге. Обеспечивают высокую скорость проницаемости для жидкости, для белков и клеток крови к механизму гемолиза.

Боковые капилляры образуют венозную сеть. Диаметр и скорость кровотока в них ниже, чем в магистральных. Проходя через большинство из них, эритроциты изменяют свою форму (деформабельность эритроцитов). Функционирование определяется режимом работы магистральных капилляров.
Между органами капилляры распределены неравномерно, больше капилляров в органах с высоким уровнем метаболизма. Их плотность - число капилляров на 1 мм2 поперечного сечения - в сердце в 2 раза больше, чем в скелетных мышцах.

Капилляры можно разделить на функционирующие (открытые) и резервные (закрытые). В покое функционируют 20-30% капилляров (дежурные капилляры), в работающих органах количество функционирующих капилляров увеличивается в 2-3 раза.

Скорость кровотока в капиллярах - 0,5-1,0 мм/с. Низкая скорость кровотока в капиллярах и огромная их поверхность создает необходимые условия для обмена веществ между кровью и тканями.


Транскапиллярный обмен осуществляется с помощью активных и пассивных механизмов. В основе пассивного транспорта - фильтрационное давление (ФД). Согласно модели транскапиллярного обмена Старлинга, величина ФД и его вектор зависят от соотношения между гидростатическим давлением (ГД) и онкотическим давлением (ОД).

Объемную скорость транскапиллярного обмена(мл/мин) можно представить как V=Kфильт/(ГДкр-ГДтк) - Косм(ОДкр-ОДтк) (где Кфильт -коэффициент капиллярной фильтрации, отражающий площадь обменной поверхности (количество функционирующих капилляров) и проницаемость капиллярной стенки для жидкости, Косм- осмотический коэффициент, отражающий реальную проницаемость мембраны для электролитов и белков).


Отклонение от нормы от любого из параметров сопровождается нарушением транскапиллярного обмена. Чаще всего это приводит к появлению отеков:

1)гидростатический отек, за счет повышения гидростатического давления;


2)гипоонкотический отек, за счет снижения онкотического давления.

Замедление и остановка кровотока в капиллярах или/и снижение гидростатического давления ниже критического уровня - блок микроциркуляции.

Транскапиллярный обмен веществ обеспечивается путем диффузии, фильтрации, реабсорбции и микропиноцитоза. Скорость диффузии высока: 60 л/мин. Легко осуществляется диффузия жирорастворимых веществ, водорастворимые вещества попадают в интерстиций через поры, крупные — путем пиноцитоза.

Фильтрационно-абсорбционный механизм - обеспечивает обмен жидкости и растворен­ных в ней веществ между плазмой и межклеточной жидкостью. Давление крови на артериальном конце ка­пилляра способствует переходу воды из плазмы в тканевую жид­кость. Белки плазмы, создавая онкотическое давление, равное при­мерно 25 мм рт.ст., задерживают выход воды. Гидростатическое давление тканевой жидкости около 3 мм рт.ст., онкотическое — 4 мм рт.ст. На артериальном конце капилляра силы, обеспечивающие фильтрацию, больше сил, обеспечивающих абсорбцию. На венозном конце капилляра создаются условия для абсорбции. Между объемом жидкости, фильтрующейся на артериальном конце капилляра и аб­сорбирующейся в венозном конце, существует динамическое равно­весие. За сутки через капилляры проходит примерно 8000 л крови, фильтруется 20 л, абсорбируется 18 л жидкости, 2 л возвращается в кровь через лимфатические сосуды. Транскапил­лярный обмен - один из механизмов поддержания внутрисосудистого объема циркулирующей крови.

Стенки капилляров гладкомышечных элементов не содержат. В капиллярах наиболее благоприятные условия для обмена между кровью и тканевой жидкостью: высокая проницаемость стенки капилляров для воды и растворенных в плазме веществ; большая обменная поверхность капилляров; гидростатическое давление, способствующее фильтрации на артериальном и реабсорбции на венозном концах капилляра; медленная линейная скорость кровотока, обеспечивающая достаточный контакт крови с обменной поверхностью капилляров.

Состояние капиллярного русла характеризуется отношением числа функционирующих капилляров к нефункционирующим. При увеличении числа функционирующих капилляров возрастает величина их обменной поверхности, снижается диффузионное расстояние между капиллярами и клетками и улучшается кровоснабжение ткани. Несмотря на небольшую толщину стенки капилляров (0,7—1,5 мкм), растяжимость их мала. Обусловлено механическими свойствами окружающей капилляр соединительной ткани органа.

Линейная скорость кровотока в сосудах микроциркуляторного русла мала—от 0,1 до 0,5 мм/с. Низкая скорость кровотока обеспечивает относительно длительный контакт крови с обменной поверхностью капилляров и создает оптимальные условия для обменных процессов. Своеобразие строения терминального сосудистого русла различных органов и тканей отражает и зависит от их функциональных особенностей, прежде всего от уровня обмена кислорода, интенсивности процессов метаболизма. В различных тканях и органах капилляры образуют сеть определенной плотности в зависимости от их метаболической активности. Критическая толщина тканевого слоя - наибольшая толщина ткани между двумя капиллярами, которая обеспечивает оптимальный транспорт кислорода и эвакуацию продуктов метаболизма. Чем интенсивнее обменные процессы в органе, тем меньше критическая толщина ткани - между показателями существует обратно пропорциональная зависимость. В большинстве паренхиматозных органов величина этого показателя – 10-30 мкм, в органах с замедленными процессами обмена возрастает до 1000 мкм.

Отсутствие мышечных клеток в стенке капилляров указывает на невозможность активного сокращения капилляров. Пассивное сужение и расширение капилляров, величина кровотока и количество функционирующих капилляров зависят от тонуса гладкомышечных структур терминальных артериол, метартериол и прекапиллярных сфинктеров.

Процессы транскапиллярного обмена жидкости в соответствии с уравнением Старлинга определяется силами, действующими в области капилляров: капиллярным гидростатическим давлением (Рс) и гидростатическим давлением интерстициальной жидкости (Pi), разность которых (Рс — Pi) способствует фильтрации, - переходу жидкости из внутрисосудистого пространства в интерстициальное; коллоидно-осмотическим давлением крови (Пс) и интерстициальной жидкости (Пi), разность которых (Пс — Пi) способствует абсорбции, - движению жидкости из тканей во внутрисосудистое пространство, а — осмотический коэффициент отражения капиллярной мембраны, который характеризует реальную проницаемость мембраны не только для воды, но и для растворенных в ней веществ, также белков. Если фильтрация и абсорбция сбалансированы, наступает «старлинговое равновесие».