Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Normalnaya_fiziologia_ekzamen2021.docx
Скачиваний:
463
Добавлен:
19.07.2021
Размер:
3.11 Mб
Скачать

Кривая "сила-длительность". Реобаза. Хронаксия. Лабильность.

Кривая «сила-длительность» показывает соотношение между временем действия раздражителя и его амплитудой. На кривой видно, что уменьшение значения тока ниже определенной критической величины не приводит к возбуждению ткани независимо от продолжительности времени, в течение которого действует этот раздражитель.

Реобаза – минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии. Реобаза - наименьшая сила постоянного электрического тока, вызывающая при достаточной длительности его действия возбуждение в живых тканях. Реобаза даёт представление о возбудимости тканей и органов по порогу силы и длительности действия раздражения. Реобаза соответствует порогу раздражения и выражается в вольтах или миллиамперах. Значение реобазы можно вычислить по формуле: i = a/t + b, где i - сила тока, t - длительность его действия, а и b - константы, определяемые свойствами ткани. Константа b является Р., так как при длительном действии раздражающего тока отношение a/t будет очень мало и i практически равняется b. Величина реобазы определяется разностью между критическим потенциалом и мембранным потенциалом покоя.

Хронаксия – минимальное время, в течение которого должен действовать ток, равный двум реобазам, чтобы вызвать ответную реакцию. Хронаксия - наименьшее время действия на ткань постоянного электрического тока удвоенной пороговой силы (удвоенной реобазы), вызывающего возбуждение ткани. Было также экспериментально установлено, что величина стимула, вызывающего возбуждающий эффект в тканях, находится в обратной зависимости от длительности его действия и графически выражается гиперболой - кривая <сила - время. Чем короче хронаксия, тем выше возбудимость.

Лабильность (Н. Е. Введенский) - свойство возбудимой ткани воспроизводить максимальное число потенциалов действия в единицу времени. Максимальная лабильность - у нервной ткани. Частота раздражений, вызывающая максимальную реакцию, - оптимальная, а вызывающая угнетение реакции - пессимальная. Мера лабильности - количество ПД, которое способно генерировать в единицу времени.

Реакции невозбудимых и возбудимых мембран на раздражители, градуальность и закон "всё или ничего".

Под действием многих раздражителей изменяется уровень мембранного потенциала. Такая реакция невозбудимых мембран связана, как правило, с изменением их ионной проницаемости за счет открывания или закрывания неспецифических потенциалнезависимых каналов. Между сдвигом мембранного потенциала невозбудимой мембраны и интенсивностью раздражителя, вызвавшего его, существует пропорциональная зависимость. Это свойство получило название градуальности. Оно присуще невозбудимой мембране во всем диапазоне изменений разности потенциалов на ней. Градуальность свойственна и возбудимой мембране, но только в том случае, если трансмембранная разность потенциалов, изменяясь под действием раздражителя, не достигает критического мембранного потенциала.

Такие раздражители, не доводящие деполяризацию до критического мембранного потенциала, и, следовательно, не вызывающие потенциала действия, называются подпороговыми для возбудимой ткани. Стимул, вызывающий сдвиг мембранного потенциала до КМП, считается пороговым, поскольку под действием его возникает потенциал действия (возбуждение).

Раздражитель может иметь разную природу (механическую, химическую, электрическую и т. д.), но пороговым он будет тогда, когда сдвинет уровень мембранного потенциала от потенциала покоя до критического мембранного потенциала: Un = |ПП| - |КМП|. Надпороговые (более сильные) раздражители возбудимой мембраны тем более вызывают потенциал действия.

Градуальность характерна и для отклонений трансмембранной разности потенциалов (от уровня потенциала покоя) в сторону, противоположную деполяризации (в аксоне кальмара от -85 до -90 мВ и более). Такой сдвиг мембранного потенциала называют гиперполяризацией. Градуальность присуща возбудимой мембране при любой ее гиперполяризации и при подпороговой (до критического мембранного потенциала) деполяризации.

Иллюстрацией сказанному служит реакция возбудимой мембраны на пропускание через нее слабого постоянного электрического тока. Под катодом развивается деполяризация, а под анодом — гиперполяризация. Гиперполяризационные сдвиги мембранного потенциала равны по абсолютной величине. Они тем больше, чем сильнее пропускаемый ток. Однако градуальность деполяризационных ответов под катодом свойственна только подпороговым электрическим стимулам, не приводящим к возбуждению. Не вызывая возбуждения, подпороговый электрический ток изменяет возбудимость возбудимой мембраны. Изменения возбудимости под действием подпорогового электрического тока - электротонические явления.

Под действием порогового и надпорогового раздражителей возбудимая мембрана генерирует ПД. Для этого процесса характерен закон «все или ничего». Смысл закона в том, что параметры потенциала действия (амплитуда, длительность, фронты) не зависят от интенсивности раздражителя. Как только достигается критический мембранный потенциал, изменения разности потенциалов на возбудимой мембране определяются только свойствами ее потенциалзависимых ионных каналов, которые обеспечивают входящий ток (из межклеточной среды в цитоплазму). Среди них внешний стимул открывает только самые чувствительные. Другие открываются за счет предыдущих, уже независимо от раздражителя. Говорят о спонтанном (самопроизвольном) характере процесса вовлечения в трансмембранный перенос ионов все новых потенциалзависимых ионных каналов. Поэтому амплитуда, длительность, крутизна переднего и заднего фронтов потенциала действия зависят только от ионных градиентов на клеточной мембране и кинетических характеристик ее каналов.

Закон «все или ничего» — характернейшее свойство одиночных клеток и волокон, обладающих возбудимой мембраной. Большинству многоклеточных образований он не свойствен, поскольку разные клетки даже в одном органе имеют неодинаковый порог возбуждения. Чем больше клеток вовлекают в возбуждение, тем сильнее ответ многоклеточной структуры. Исключение составляют структуры, организованные по типу синцития. Их возбуждение подчиняется закону «все или ничего».

Закон «все или ничего»: подпороговый раздражитель вызывает местную деполяризацию («ничего»), пороговый раздражитель вызывает максимально возможный ответ («все»). Сверхпороговый раздражитель вызывает такой же ответ, что и пороговый.