- •Лекция № 3 Введение. Классификация событий. Действия над событиями
- •2. События. Классификация событий. Пространство элементарных событий
- •4. Практические занятия
- •Лекция№5:Условная вероятность. Формула полной вероятности и формула Байеса. Независимые случайные события
- •1.1 Распределение Релея
- •1 Система двух случайных величин
- •1.Введение
- •4. Практические занятия
- •2.Элементы теории множеств.
- •2.1 Определение множества. Мощность множества. Подмножества.
- •2.2 Множества и подмножества.
- •2.3 Способы задания множеств. Универсальное множество.
- •2.4 Операции над множествами.
- •Практическое занятие №2
- •Тема: Основные понятия комбинаторики.
- •2. Перестановки, размещения.
- •3. Сочетания.
- •4. Разбиение на группы:
- •1. Введение
- •3. Алгебра событий
- •1. Введение
- •2. События. Классификация событий. Пространство элементарных событий
- •Примеры.
- •3. Алгебра событий
- •События Вi образуют полную группу событий, если
- •Особый интерес представляют полные группы несовместимых событий
- •План лекции:
- •2. Классический способ задания вероятностей.
- •3. Статистическая вероятность
- •4. Геометрическая вероятность.
- •Лекция№5
- •2. Формула полной вероятности.
- •3. Формула Байеса (теорема гипотез).
- •4. Независимые случайные события.
- •Контрольные вопросы и тесты
- •2 Закон распределения случайной величины.
- •3. Функция распределения
- •4. Плотность распределения случайной величины
- •Практическое занятие №1
- •1.Математическое ожидание , мода и медиана случайной величины
- •2. Моменты. Дисперсия. Среднее квадратическое отклонение.
- •3. Моменты высших порядков
- •Математическое ожидание, мода и медиана случайной величины
- •2. Моменты. Дисперсия. Среднее квадратическое отклонение.
- •3. Моменты высших порядков
- •Практическое занятие №1
- •5. Контрольные вопросы и задания
- •1. Биномиальное распределение
- •2. Распределение Пуассона
- •3. Простейший поток событий
- •1. Испытания (схема) Бернулли. Биномиальное распределение
- •Если ставить вопрос о появлении события а k-раз в n испытаниях в произвольном порядке, то событие представимо в виде
- •2. Распределение Пуассона.
- •3. Простейший поток событий
- •Задача 4
- •Задача 5
- •Задача 6
- •Практическое занятие № 2
- •5. Контрольные вопросы
- •1.1 Равномерное распределение вероятностей
- •1.2 Показательное (экспоненциальное) распределение
- •1.3 Нормальное распределение
- •Задача 1
- •Решение
- •Решение
- •Задача 4
- •Задача 6
- •Практическое занятие №2
- •2. Рекомендуемые фрагменты программ
- •1.1 Распределение Релея
- •1.1 Распределение Релея
- •1.2 Распределение Максвелла
- •1.3 Логарифмическое нормальное распределение
- •2. Функция случайной величины.
- •Практическое занятие №1
- •3. Рекомендации к выполнению.
- •Практическое занятие №2
- •Задача3
- •1 Система двух случайных величин
- •1 Система двух случайных величин
- •1.2 Плотность распределения двух случайных величин
- •1.3 Условные функция распределения и плотность распределения
- •1.4 Корреляция двух случайных величин
- •Аналогично имеем
- •2. Система произвольного числа случайных величин
- •Задача1
- •Практическое занятие №2 Тема: Исследование системы двух случайных величин
- •Так как под интегралом в (1) находится неотрицательная величина, то, выбросив из интервала интегрирования отрезок ав, мы значение интеграла не увеличим, т.Е.
- •2. Характеристические функции
- •Для дискретной случайной величины х с законом распределения
- •Свойства характеристической функции
- •3. Центральная предельная теорема
- •2. Числовые характеристики выборки
- •2.1. Выборочное среднее
- •Выборочная дисперсия
- •3. Статистический ряд. Статистическая функция распределения
- •4. Статистическая совокупность. Гистограмма
- •1. Оценка параметров
- •2. Метод наибольшего правдоподобия для нахождения оценок
- •3. Метод наименьших квадратов
2. Числовые характеристики выборки
2.1. Выборочное среднее
Для конкретной выборки объема n ее выборочное среднее определяется соотношением
где хi – значение элементов выборки. Обычно требуется описать статистические свойства произвольных случайных выборок, а не одной из них. Это значит, что рассматривается математическая модель, которая предполагает достаточно большое количество выборок объема n. В этом случае элементы выборки рассматриваются как случайные величины Хi, принимающие значения хi с плотностью вероятностей f(x), являющейся плотностью вероятностей генеральной совокупности. Тогда выборочное среднее также является случайной величиной равной
Как и ранее будем обозначать случайные величины прописными буквами, а значения случайных величин – строчными.
Среднее значение генеральной совокупности, из которой производится выборка, будем называть генеральным средним и обозначать mx. Можно ожидать, что если объем выборки значителен, то выборочное среднее не будет заметно отличаться от генерального среднего. Поскольку выборочное среднее является случайной величиной, для нее можно найти математическое ожидание:
Таким образом, математическое ожидание выборочного среднего равно генеральному среднему. В этом случае говорят, что выборочное среднее является несмещенной оценкой генерального среднего. В дальнейшем мы вернемся к этому термину. Так как выборочное среднее является случайной величиной, флуктуирующей вокруг генерального среднего, то желательно оценить эту флуктуацию с помощью дисперсии выборочного среднего. Рассмотрим выборку, объем которой n значительно меньше объема генеральной совокупности N (n << N). Предположим, что при формировании выборки характеристики генеральной совокупности не меняются, что эквивалентно предположению N = . Тогда
Случайные величины Хi и Xj (ij) можно считать независимыми, следовательно,
Подставим полученный результат в формулу для дисперсии:
где 2 – дисперсия генеральной совокупности.
Из этой формулы следует, что с увеличением объема выборки флуктуации среднего выборочного около среднего генерального уменьшаются как 2/n. Проиллюстрируем сказанное примером. Пусть имеется случайный сигнал с математическим ожиданием и дисперсией соответственно равными mx = 10, 2 = 9.
Отсчеты сигнала берутся в равноотстоящие моменты времени t1, t2, ... , tn.
X(t)
X1
t1 t2 . . . tn t
Так как отсчеты являются случайными величинами, то будем их обозначать X(t1), X(t2), . . . , X(tn).
Определим количество отсчетов, чтобы среднее квадратическое отклонение оценки математического ожидания сигнала не превысило 1% его математического ожидания. Поскольку mx = 10, то нужно, чтобы С другой стороны поэтому или Отсюда получаем, что n 900 отсчетов.