Добавил:
timofeev.9@mail.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Оборудование Бортовых Систем.doc
Скачиваний:
414
Добавлен:
05.01.2020
Размер:
4.08 Mб
Скачать

Источники электрической энергии

Процесс получения электрической энергии из других видов энергии называется генерированием электроэнергии.

Источниками электрической энергии на воздушных судах являются:

-генераторы постоянного тока;

-генераторы переменного тока;

-химические источники электрического тока.

На воздушных судах, где основной системой электроснабжения служит система постоянного тока, для получения переменного тока стабильной частоты применяются электромашинные однофазные и трехфазные преобразователи, а также статические преобразователи.

Для питания переменным током повышенного или пониженного напряжения используются трансформаторы.

Генераторы представляют собой электрическую машину, которая преобразует механическую энергию в электрическую.

В основу принципа действия генератора положено явление электромагнитной индукции. Его сущность заключается в возникновении ЭДС в об­мотках якоря при пересечении ими магнитного поля индуктора. Это поле создается в полюсах генератора при прохождении постоянного тока по обмоткам катушек возбуждения. В зависимости от способа питания обмоток возбуждения генераторы подразде­ляются на генераторы:

-c независимым возбуждением;

-с самовоз­буждением;

-со смешанным возбуждением.

В генераторах с независимым возбуждением обмотки возбуж­дения питаются от постороннего источника постоянного тока.

В генераторах с самовозбуждением эти обмотки питаются то­ком, вырабатываемым самим генератором.

Стартеры-генераторы помимо своего основного назначения - снабжать бортовую сеть высококачественной энергией - запускают также турбореактивные и турбовинтовые авиадвигатели. Их работа в режиме запуска двигателей программируется специальной пусковой аппаратурой.

Авиационные генераторы постоянного тока

Генераторы постоянного тока относятся к классу генераторов с самовозбуждением, а по схеме подсоединения обмотки возбуждения к якорю - в большинстве случаев к генераторам с параллельным возбуждением.

Генератор схематично можно представить состоящим из двух агрегатов: неподвижного статора с индуктором, на сердечниках которого смонтированы обмотки возбуждения ОВ, и вращающегося якоря Я, служащего для преобразования меха­нической энергии в электрическую.

При вращении якоря индуцируется переменная ЭДС, а для питания обмоток возбуждения требуется постоянный ток, его выпрямление осуществляется специальным щеточно-коллекторным устройством. В начальный период работы генератор самовозбуждается вследствие остаточного магнетизма в металле полюсов. Поэтому генераторы в процессе эксплуатации не должны перегреваться и подвергаться резким ударам, иначе остаточный магнетизм в полюсах может исчезнуть.

При работе генератора в режиме холостого хода, т. е. с отклю­ченной внешней сетью, ЭДС генератора зависит от частоты враще­ния якоря n его якоря и магнитного потока Ф в индукторе, который в свою очередь зависит от тока возбуждения iB:

- постоянный коэффициент

Е - ЭДС генератора; р - число пар полюсов; N - число активных проводников обмотки якоря; а – число пар параллельных ветвей обмотки якоря;

Ф - магнитный поток возбуждения.

При работе генератора на бортовую сеть напряжение на его зажимах зависит от ЭДС, тока IН нагрузки и сопротивления RЯ якоря:

U = Е - IНRЯ

При увеличении нагрузки напряжение на зажимах генератора постепенно снижается и может достигнуть критического значения, после чего напряжение резко падает до нуля наступает режим короткого замыкания.

Типовыми представителями генераторов постоянного тока являются генераторы серии ГСР (с расширенным диапазоном ча­стот вращения). Конструкция и электрическая схема одного из мощных гене­раторов серии ГСР представлена на рисунке.

Корпус 9 генератора состоит из двух частей: магнитопровода и щита. Магнитопровод, являющийся средней частью корпуса, выполнен из электротехнической стали и соединен со щитом спо­собом сварки. В нем смонтированы основные 3 и дополнительные 7 полюсы с катушками обмоток возбуждения 4 и 6, а также щеткодержатели 10. Дополнительные полюсы необходимы для устранения вредного влияния реакции якоря, которая приводит к искрению и уменьшению индуцируемой ЭДС.

Реакция якоря – действие магнитного поля якоря на поле основных полюсов машины. Реакция якоря вызывает уменьшение магнитного потока генератора и смещение физической нейтрали - линии, перпендикулярной к оси магнитного поля.

Устройство и электрическая схема генератора серии ГСР:

1 — патрубок; 2 — коллектор; 3 — основной полюс; 4 — катушка обмотки возбуждения основного полюса; 5 — упругий валик; 6 — катушка обмотки возбуждения дополнитель­ного полюса; 7 — дополнительный полюс; 8 — якорь; 9 — корпус; 10 — щеткодер­жатели; 7 полюсы с катушками обмоток возбуждения 4 и 6, а также щетко­держатели 10.

Якорь 8, коллектор 2 и вентилятор смонтированы на общем валу, опорами которого являются два подшипника.

Генерируемый ток с коллектора отводится меднографитовыми щетками. Они устанавливаются в щеткодержа­телях и прижимаются к коллектору пружинами. Генератор в полете охлаждаемся продувом воз­духа через его внутренние полости. Воздух нагнетается вентиля­тором через патрубок 1 и, омывая щеточно-коллекторный узел, якорь, полюсы и обмотки, выходит через окна в щите корпуса.

На воздушных судах применяются генераторы постоянного тока следующих типов: ГС, ГСК, ГСН, ГСР и ВГ.

Основным недостатком генераторов постоянного тока является недостаточно надежный контакт между токосъемными щетками и коллектором якоря, что особенно ярко проявляется при полетах на больших высотах и вызывает интенсивное искрение и сопутст­вующие помехи работе установленного на самолете электронного оборудования.

Комплекс аппаратуры генератора постоянного тока имеет регулятор напряжения, дифференциально-минимальное реле, автомат защиты от перенапряжения типа АЗП и регулировочные резисторы.