
- •Теорія механізмів і машин
- •Лекції з курсу “Теорія механізмів і машин”
- •Лекція 16 планетарні механізми
- •Лекція 1 загальні відомості значення і зміст курсу теорії механізмів і машин
- •1) Структурний аналіз;
- •2) Кінематичний аналіз;
- •3) Динамічний аналіз.
- •Деякі відомості з історії розвитку науки про машини
- •Механізм
- •Основна література
- •Лекція 2 структура і класифікація механізмів кінематичні пари та їх класифікація
- •Кінематичні ланцюги та їх класифікація
- •Кінематичні з'єднання
- •Структурна формула п.Л.Чебишова.
- •Зайві ступені вільності і умови зв'язку
- •Заміна вищих кінематичних пар нижчими
- •Лекція 3 основний принцип утворення механізмів
- •Структурні групи плоских механізмів задовольняють умову
- •Структурна класифікація плоских механізмів
- •Структурні групи і механізми II класу
- •Структурні групи і механізми III класу
- •Структурні групи і механізми IV класу
- •Приклади структурного аналізу плоских механізмів
- •Лекція 4 кінематичне дослідження механізмів задачі і методи кінематичного дослідження механізмів
- •Плани швидкостей
- •План прискорень
- •Плани швидкостей і прискорень кулісного механізму
- •Підставивши (5.9) у (5.8), одержимо
- •Метод засічок
- •Побудова діаграм переміщення
- •Дослідження руху механізмів методом кінематичних діаграм
- •Метод хорд
- •1) Зростанню ординат кривої, що диференціюється, відповідають додатні значення ординат диференціальної кривої, а зменшенню — від'ємні значення;
- •2) При максимумі кривої, що диференціюється, диференціальна крива переходить через нуль від додатних значень ординат до від'ємних, а при мінімумі — від від'ємних значень ординат до додатних;
- •3) Точці перегину кривої, що диференціюється, відповідає максимум або мінімум на диференціальній кривій. Аналітитчне дослідження кінематики механізмів
- •Лекція 7
- •Силовий розрахунок плоских механізмів
- •Без урахування сил тертя
- •Основні задачі силового розрахунку
- •Статична визначеність структурної групи
- •Методика і порядок силового розрахунку механізмів
- •Силовий розрахунок групи II класу і виду
- •Силовий розрахунок механізму і класу
- •Рівняння (7.5) набуває вигляду:
- •Лекція 8 зведення сил і моментів сил
- •Підставивши вирази (8.2) у рівняння (8.1), дістанемо:
- •Підставляючи рівність (8.4) і (8.5) у рівняння (8.1), знаходимо:
- •Зведення мас і моментів інерції
- •Лекція 9 рівняння руху механізму
- •При обертовому русі початкової ланки після зведення сил і мас маємо:
- •Режими руху механізму
- •Механічний коефіцієнт корисної дії
- •Коефіцієнт корисної дії машини
- •Послідовне з'єднання механізмів
- •Паралельне з'єднання механізмів
- •Лекція 10 важіль м.Є. Жуковського
- •Дослідження руху механізмів методом віттенбауера
- •Дослідження руху механізмів методом жуковського
- •Середня швидкість і коефіцієнт нерівномірності руху машини
- •Визначення коефіцієнта нерівномірності руху машини за допомогою кривої віттенбауера
- •Підставляючи у формулу (11.10) вирази (11.9), маємо:
- •Визначення моменту інерції маховика методом віттенбауера
- •Розв'язуючи рівняння (11.6) і (11.7) відносно і знаходимо:
- •Підносячи праві і ліві частини цих рівнянь до квадрата, записуємо
- •Підставляючи (11.22) у рівняння (11.10), знаходимо:
- •Визначення розмірів маховика
- •Якщо маса обода маховика практично може бути взята як
- •Регулятори швидкості
- •Лекція 13 передачі. Загальні відомості
- •Основні характеристики передач
- •Фрикційні передачі
- •Фрикційні передачі з гнучкими ланками
- •Зубчасті передачі. Загальні відомості
- •Типи зубчастих передач
- •Геометричні параметри циліндричного зубчастого колеса
- •Висота ділильної ніжки
- •Лекція 14 багатоланкові зубчасті механізми загальні відомості
- •1) Зубчасті механізми з нерухомими осями всіх коліс (такі передачі називають серіями зубчастих коліс);
- •2) Зубчасті механізми з рухомими осями окремих коліс (епіциклічні передачі, деколи — планетарні, важільно-зубчасті). Зубчасті механізми з нерухомими осями коліс
- •Ступінчаста зубчаста передача
- •Паразитна зубчаста передача
- •Лекція 15 зубчасті механізми з рухомими осями коліс
- •Диференціальні механізми
- •Комбіновані (багатоланкові) зубчасті механізми
- •Замкнуті диференціальні механізми
- •Графічне визначення передаточних відношень зубчастих механізмів
- •Лекція 15 зубчасті механізми з рухомими осями коліс
- •Диференціальні механізми
- •Комбіновані (багатоланкові) зубчасті механізми
- •Замкнуті диференціальні механізми
- •Графічне визначення передаточних відношень зубчастих механізмів
- •Лекція 16 планетарні механізми
- •Синтез планетарних механізмів
- •Вибір схеми планетарного механізму;
- •2) Вибір чисел зубів, що забезпечують задане передаточне відношення. Вибір схеми планетарного механізму
- •Вибір числа зубів планетарного механізму
- •2) Сусідство;
- •3) Можливість складання передачі;
- •4) Усунення підрізання й інтерференції зубчастих коліс та самогальмування передачі.
- •Склавши почленно залежності (16.9), після перетворень дістанемо
- •Лекція 17 основна теорема зубчастого зачеплення
- •Ковзання профілів зубів
- •Лекція 18 властивості і рівняння евольвенти кола
- •4. Евольвента починається на основному колі і завжди розташована за його межами.
- •Розв'язуючи це рівняння відносно θ, маємо
- •Теоретичні вихідний і твірний контури
- •Лекція 19 способи нарізання зубчастих коліс
- •Спосіб копіювання
- •Спосіб обкатки (огинання)
- •Геометричні та кінематичні умови існування передачі
- •1) Забезпечення плавності роботи зубчастої передачі;
- •2) Усунення підрізання зубів;
- •3) Усунення загострення зубів;
- •Коефіцієнт перекриття
- •Лекція 20 підрізання зубів
- •Загострення зубів
- •Інтерференція зубів
- •Лекція 21 кулачкові механізми
- •Загальні відомості
- •Основні типи кулачкових механізмів
- •Замикання ланок кулачкового механізму
- •Основні параметри кулачкових механізмів
- •Кінематичний аналіз кулачкових механізмів
- •Лекція 22 кінематичний синтез кулачкових механізмів
- •Графічний спосіб
- •Аналітичний спосіб
- •Зміщений кулачковий механізм з роликовим штовхачем Графічний спосіб
- •Аналітичний спосіб
- •Кулачковий механізм з роликовим коромислом Графічний спосіб
- •Аналітичний спосіб
- •Лекція 23 динамічний синтез кулачкових механізмів
- •Графічний спосіб
- •Аналітичний спосіб
- •Кулачковий механізм із загостреним або роликовим коромислом
- •Лекція 24 тертя і знос у машинах
- •Види тертя
- •Тертя ковзання
- •Кут і конус тертя
- •Тертя в поступальних кінематичних парах
- •Тертя на похилій площині
- •Ккд похилої площини
- •Лекція 25 тертя гнучкої ланки
- •Із співвідношення (25.3) і (25.4) випливає:
- •Тертя ковзання змащених тіл
- •Тертя кочення
- •На практиці інколи користуються умовною безрозмірною величиною
Лекція 24 тертя і знос у машинах
Під час руху одного тіла відносно іншого між поверхнями, що стикаються, виникає взаємодія, яка перешкоджає переміщенню цього тіла, а якщо воно знаходиться в стані спокою, — його відносному зміщенню. Це явище називається тертям, а сили опору — силами тертя. Отже, тертям називають опір, що виникає при переміщенні одного тіла відносно іншого. Поверхні, якими стикаються між собою тіла, називаються тертьовими.
Виникнення тертя пояснюється двома основними причинами.
По-перше, поверхні тертя не абсолютно гладкі, а мають нерівності, які при стиканні поверхонь створюють опір руху Ff (рис. 24.1).
По-друге, між тілами, які стикаються поверхнями, виникають сили молекулярної взаємодії, для подолання яких також необхідно прикласти силу.
Як показують експериментальні дослідження, тертя є складний комплекс механічних, фізичних і хімічних явищ, причому ті чи інші явища переважають залежно від умов, за яких проходить процес тертя.
Тертя є одним із найпоширеніших явищ природи і відіграє дуже важливу роль у техніці. Цілий ряд задач механіки, деталей машин, спеціальних технічних дисциплін не можна розв'язати без знань законів тертя.
Тертя відіграє в машинах як корисну, так і шкідливу роль. З одного боку, завдяки тертю рухаються тіла; з другого — тертя є причиною зношування деталей машин і приладів, значних витрат енергії. Підраховано, що близько 1/3 світових енергетичних ресурсів даремно витрачаються на роботу, пов'язану з тертям.
Відомо, що перші дослідження явища тертя проводив ще Леонардо да Вінчі. Детальне дослідження законів тертя почав французький механік і фізик Г. Амонтон (1663-1705) і протягом усього століття ці дослідження поглиблювалися. В 1781 р. Ш. Кулон опублікував працю "Теорія простих машин з точки зору їх частин...", в якій розвинув теорію тертя, сформулював основні закони тертя. Експериментальне дослідження тертя продовжували і послідовники Кулона. Проте треба зауважити, що ця складна наукова проблема і до нашого часу повністю не розв'язана. Тому на практиці все ще користуються наближеними емпіричними законами, які були відкриті Амонтоном і Кулоном.
Види тертя
Залежно від характеру відносного переміщення тіл, що стикаються, відрізняють два види тертя: ковзання і кочення.
Інколи розглядають ще один вид тертя - так зване тертя вертіння. При терті ковзання одні і ті самі поверхні одного тіла стикаються з різними поверхнями іншого тіла. При терті кочення різні поверхні одного тіла послідовно стикаються з різними поверхнями іншого тіла.
Прикладами тертя ковзання можуть бути тертя лиж по снігу, пили по дереву, різця по металу, підошви взуття по землі, цапфи вала по втулці підшипника тощо. Тертя кочення має місце при перекочуванні коліс автомобіля по землі або вагона по рейках, у шарикових або роликових підшипниках, фрикційних передачах тощо.
Рис.24.1 Рис. 24.2
Для зменшення сил тертя використовують різні мастила. Залежно від їх наявності між тертьовими поверхнями розрізняють два основних види тертя:
сухе тертя (без мастильних матеріалів) і рідинне тертя (з мастильними матеріалами). При сухому терті між тертьовими поверхнями тіл відсутнє будь-яке мастило. При рідинному терті тертьові поверхні тіл повністю розділені шаром мастила (рис. 24.2) і тертя твердих частин тіла замінено тертям окремих шарів мастила. Мастило може бути твердим, рідким або газоподібним.
Крім цього, інколи ще розрізняють проміжні види тертя: граничне, напівсухе і напіврідинне. При граничному терті на тертьових поверхнях є тонкі адсорбовані маслянисті плівки. Напівсухе і напіврідинне тертя не мають між собою чіткої границі: якщо перевершує сухе тертя (більша частина поверхні контакту не покрита мастилом), то вважають, що тертя напівсухе, і навпаки, якщо перевершує рідинне тертя, то маємо напіврідинне тертя.