
- •Теорія механізмів і машин
- •Лекції з курсу “Теорія механізмів і машин”
- •Лекція 16 планетарні механізми
- •Лекція 1 загальні відомості значення і зміст курсу теорії механізмів і машин
- •1) Структурний аналіз;
- •2) Кінематичний аналіз;
- •3) Динамічний аналіз.
- •Деякі відомості з історії розвитку науки про машини
- •Механізм
- •Основна література
- •Лекція 2 структура і класифікація механізмів кінематичні пари та їх класифікація
- •Кінематичні ланцюги та їх класифікація
- •Кінематичні з'єднання
- •Структурна формула п.Л.Чебишова.
- •Зайві ступені вільності і умови зв'язку
- •Заміна вищих кінематичних пар нижчими
- •Лекція 3 основний принцип утворення механізмів
- •Структурні групи плоских механізмів задовольняють умову
- •Структурна класифікація плоских механізмів
- •Структурні групи і механізми II класу
- •Структурні групи і механізми III класу
- •Структурні групи і механізми IV класу
- •Приклади структурного аналізу плоских механізмів
- •Лекція 4 кінематичне дослідження механізмів задачі і методи кінематичного дослідження механізмів
- •Плани швидкостей
- •План прискорень
- •Плани швидкостей і прискорень кулісного механізму
- •Підставивши (5.9) у (5.8), одержимо
- •Метод засічок
- •Побудова діаграм переміщення
- •Дослідження руху механізмів методом кінематичних діаграм
- •Метод хорд
- •1) Зростанню ординат кривої, що диференціюється, відповідають додатні значення ординат диференціальної кривої, а зменшенню — від'ємні значення;
- •2) При максимумі кривої, що диференціюється, диференціальна крива переходить через нуль від додатних значень ординат до від'ємних, а при мінімумі — від від'ємних значень ординат до додатних;
- •3) Точці перегину кривої, що диференціюється, відповідає максимум або мінімум на диференціальній кривій. Аналітитчне дослідження кінематики механізмів
- •Лекція 7
- •Силовий розрахунок плоских механізмів
- •Без урахування сил тертя
- •Основні задачі силового розрахунку
- •Статична визначеність структурної групи
- •Методика і порядок силового розрахунку механізмів
- •Силовий розрахунок групи II класу і виду
- •Силовий розрахунок механізму і класу
- •Рівняння (7.5) набуває вигляду:
- •Лекція 8 зведення сил і моментів сил
- •Підставивши вирази (8.2) у рівняння (8.1), дістанемо:
- •Підставляючи рівність (8.4) і (8.5) у рівняння (8.1), знаходимо:
- •Зведення мас і моментів інерції
- •Лекція 9 рівняння руху механізму
- •При обертовому русі початкової ланки після зведення сил і мас маємо:
- •Режими руху механізму
- •Механічний коефіцієнт корисної дії
- •Коефіцієнт корисної дії машини
- •Послідовне з'єднання механізмів
- •Паралельне з'єднання механізмів
- •Лекція 10 важіль м.Є. Жуковського
- •Дослідження руху механізмів методом віттенбауера
- •Дослідження руху механізмів методом жуковського
- •Середня швидкість і коефіцієнт нерівномірності руху машини
- •Визначення коефіцієнта нерівномірності руху машини за допомогою кривої віттенбауера
- •Підставляючи у формулу (11.10) вирази (11.9), маємо:
- •Визначення моменту інерції маховика методом віттенбауера
- •Розв'язуючи рівняння (11.6) і (11.7) відносно і знаходимо:
- •Підносячи праві і ліві частини цих рівнянь до квадрата, записуємо
- •Підставляючи (11.22) у рівняння (11.10), знаходимо:
- •Визначення розмірів маховика
- •Якщо маса обода маховика практично може бути взята як
- •Регулятори швидкості
- •Лекція 13 передачі. Загальні відомості
- •Основні характеристики передач
- •Фрикційні передачі
- •Фрикційні передачі з гнучкими ланками
- •Зубчасті передачі. Загальні відомості
- •Типи зубчастих передач
- •Геометричні параметри циліндричного зубчастого колеса
- •Висота ділильної ніжки
- •Лекція 14 багатоланкові зубчасті механізми загальні відомості
- •1) Зубчасті механізми з нерухомими осями всіх коліс (такі передачі називають серіями зубчастих коліс);
- •2) Зубчасті механізми з рухомими осями окремих коліс (епіциклічні передачі, деколи — планетарні, важільно-зубчасті). Зубчасті механізми з нерухомими осями коліс
- •Ступінчаста зубчаста передача
- •Паразитна зубчаста передача
- •Лекція 15 зубчасті механізми з рухомими осями коліс
- •Диференціальні механізми
- •Комбіновані (багатоланкові) зубчасті механізми
- •Замкнуті диференціальні механізми
- •Графічне визначення передаточних відношень зубчастих механізмів
- •Лекція 15 зубчасті механізми з рухомими осями коліс
- •Диференціальні механізми
- •Комбіновані (багатоланкові) зубчасті механізми
- •Замкнуті диференціальні механізми
- •Графічне визначення передаточних відношень зубчастих механізмів
- •Лекція 16 планетарні механізми
- •Синтез планетарних механізмів
- •Вибір схеми планетарного механізму;
- •2) Вибір чисел зубів, що забезпечують задане передаточне відношення. Вибір схеми планетарного механізму
- •Вибір числа зубів планетарного механізму
- •2) Сусідство;
- •3) Можливість складання передачі;
- •4) Усунення підрізання й інтерференції зубчастих коліс та самогальмування передачі.
- •Склавши почленно залежності (16.9), після перетворень дістанемо
- •Лекція 17 основна теорема зубчастого зачеплення
- •Ковзання профілів зубів
- •Лекція 18 властивості і рівняння евольвенти кола
- •4. Евольвента починається на основному колі і завжди розташована за його межами.
- •Розв'язуючи це рівняння відносно θ, маємо
- •Теоретичні вихідний і твірний контури
- •Лекція 19 способи нарізання зубчастих коліс
- •Спосіб копіювання
- •Спосіб обкатки (огинання)
- •Геометричні та кінематичні умови існування передачі
- •1) Забезпечення плавності роботи зубчастої передачі;
- •2) Усунення підрізання зубів;
- •3) Усунення загострення зубів;
- •Коефіцієнт перекриття
- •Лекція 20 підрізання зубів
- •Загострення зубів
- •Інтерференція зубів
- •Лекція 21 кулачкові механізми
- •Загальні відомості
- •Основні типи кулачкових механізмів
- •Замикання ланок кулачкового механізму
- •Основні параметри кулачкових механізмів
- •Кінематичний аналіз кулачкових механізмів
- •Лекція 22 кінематичний синтез кулачкових механізмів
- •Графічний спосіб
- •Аналітичний спосіб
- •Зміщений кулачковий механізм з роликовим штовхачем Графічний спосіб
- •Аналітичний спосіб
- •Кулачковий механізм з роликовим коромислом Графічний спосіб
- •Аналітичний спосіб
- •Лекція 23 динамічний синтез кулачкових механізмів
- •Графічний спосіб
- •Аналітичний спосіб
- •Кулачковий механізм із загостреним або роликовим коромислом
- •Лекція 24 тертя і знос у машинах
- •Види тертя
- •Тертя ковзання
- •Кут і конус тертя
- •Тертя в поступальних кінематичних парах
- •Тертя на похилій площині
- •Ккд похилої площини
- •Лекція 25 тертя гнучкої ланки
- •Із співвідношення (25.3) і (25.4) випливає:
- •Тертя ковзання змащених тіл
- •Тертя кочення
- •На практиці інколи користуються умовною безрозмірною величиною
Коефіцієнт корисної дії машини
Як правило, сучасні машини складаються з багатьох механізмів, ККД яких відомі або його можна порівняно легко знайти. Проте загальний ККД машини залежить не тільки від ККД окремих механізмів, що входять до її складу, але й від способу з'єднання цих механізмів у машині. Відрізняють три способи з'єднання механізмів у машині: послідовне, паралельне і змішане.
Послідовне з'єднання механізмів
Нехай є машина, яка складається з п послідовно з'єднаних механізмів (рис. 9.3), кожен з яких має відповідно ККД η1, η2, η3, ..., ηn.
Загальний ККД такої машини визначається за формулою
(9.17)
Рис.9.3
Перший механізм приводиться в рух рушійними силами, що виконують роботу Ар. Оскільки корисна робота А1 першого механізму буде роботою рушійних сил для другого механізму і відповідно у всьому ланцюгу механізмів корисна робота кожного попереднього механізму буде роботою рушійних сил для кожного наступного механізму, то коефіцієнт корисної дії кожного механізму обчислюється так:
…,
(9.18)
Якщо перемножити між собою ліві та праві частини (9.73), дістанемо:
Отже, загальний механічний ККД послідовно сполучених механізмів (або машин) дорівнює добуткові механічних ККД окремих механізмів (або машин), що утворюють одну машину (або машинний агрегат), тобто
(9.19)
З
формули (9.19) видно, що чим складніша
машина, тим більші втрати енергії і тим
менший ККД. Причому загальний ККД машини
при послідовному з'єднанні механізмів
завжди менший за найменший ККД механізмів,
які входять до його складу (
).
Це свідчить про те, що при послідовному
з'єднанні механізмів необхідно дуже
старанно виготовляти кожний механізм,
кожний вузол машини, інакше не можна
домогтися високого ККД машини.
Паралельне з'єднання механізмів
На
рис. 9.4 показано схему машини з
паралельним з'єднанням механізмів.
Робота рушійних сил Ар,
яка підводиться до машини, розподіляється
між окремими механізмами відповідно
,
які є для кожного механізму рушійними
роботами, а значить:
(9.20)
Рис.9.4
Кожний механізм відповідно виконує корисну роботу:
…,
(9.21)
де
— ККД і-го
механізму.
Загальна корисна робота всієї машини дорівнює сумі робіт усіх механізмів, тобто
(9.22)
Тоді на основі (9.13) загальний ККД машини при паралельному з'єднанні механізмів має вигляд:
(9.23)
З формули (9.23) випливає, що механічний ККД машини при паралельному з'єднанні механізмів залежить не тільки від ККД окремих механізмів, але й від характеру розподілу роботи рушійних сил між механізмами.
Очевидно, чим більша частина всієї затраченої роботи поступатиме в механізм з найбільшим ККД, тим значення ККД усієї машини буде більшим, і, навпаки, ККД машини буде тим меншим, чим більша частина Ар надходитиме в механізм з найменшим ККД.