- •Эконометрика
- •Лекция 1. Предмет и метод эконометрики. Ковариация, дисперсия и корреляция
- •1.1. Предмет и метод эконометрики
- •1.2. Выборочная ковариация.
- •1.3. Основные правила расчета ковариации.
- •1.4. Теоретическая ковариация.
- •1.5. Выборочная дисперсия. Правила расчета дисперсии.
- •1.6. Коэффициент корреляции.
- •1.7. Коэффициент частной корреляции.
- •Тест для самоконтроля
- •Лекция 2. Парная линейная регрессия.
- •2.1. Проблема оценивания линейной связи экономических переменных.
- •2.2. Модель парной линейной регрессии.
- •2.3. Регрессия по методу наименьших квадратов.
- •2.4. Интерпретация уравнения регрессии.
- •2.5. Качество оценки: коэффициент r2.
- •Тесты для самоконтроля
- •Лекция 3. Статистическая оценка достоверности выборочных показателей связи.
- •Оценка достоверности уравнения регрессии в целом
- •Определение средней ошибки, предельной ошибки и доверительных границ коэффициента корреляции
- •3.1. Оценка достоверности уравнения регрессии в целом
- •3.2. Определение средней ошибки, предельной ошибки и доверительных границ коэффициента корреляции
- •3.3. Проверка гипотезы и интервальная оценка коэффициента регрессии.
- •3.4. Средняя ошибка уравнения и интервальная оценка отдельных значений результативного признака.
- •Тесты для самоконтроля
- •Лекция 4. Нелинейная регрессия
- •4.1. Спецификация модели
- •4.2. Классификация нелинейных функций.
- •4.3. Отдельные виды нелинейных регрессий.
- •4.3.2. Равносторонняя гипербола.
- •4.3.3. Степенная функция.
- •4.4.Коэффициенты эластичности в нелинейных регрессиях.
- •4.5. Корреляция для нелинейной регрессии.
- •Тесты для самоконтроля
- •Лекция 5. Множественная регрессия и корреляция
- •Понятие множественной регрессии, и ее графическая интерпретация
- •Отбор факторов при построении модели.
- •Коллинеарность факторов. Методы преодоления межфакторной связи
- •Модульная единица 5.1. Параметризация и спецификация уравнения множественной регрессии
- •5.1.1. Понятие множественной регрессии, и ее графическая интерпретация
- •5.1.2. Отбор факторов при построении модели.
- •5.1.3. Коллинеарность факторов. Методы преодоления межфакторной связи
- •5.1.4. Параметризация уравнения множественной регрессии и его интерпретация
- •Тесты для самоконтроля
- •Модульная единица 5.2. Множественная и частная корреляция. Предпосылки мнк.
- •5.2.1.Множественная корреляция.
- •5.2.2. Скорректированный индекс детерминации (корреляции).
- •5.2.3. Частная корреляция.
- •5.2.4. Частные f- тесты
- •5.2.5. Предпосылки мнк.
- •Тесты для самоконтроля
- •Лекция 6. Моделирование динамических процессов
- •6.1. Элементы временного ряда
- •6.2. Автокорреляция
- •6.3. Выявление структуры временного ряда
- •6.4. Моделирование тенденции
- •6.5. Изучение взаимосвязи переменных по данным временных рядов
- •6.6. Критерий Дарбина-Уотсона
- •Тесты для самоконтроля
- •Лекция 7. Системы эконометрических уравнений
- •Модульная единица 7.1. Виды систем эконометрических уравнений и их идентификация. Косвенный метод наименьших квадратов
- •7.1.1. Понятие и необходимость применения систем уравнений
- •7.1.2. Косвенный метод наименьших квадратов
- •7.1.3. Проблема идентификации
- •Вопросы для повторения
- •Тесты для самоконтроля
- •Модульная единица 7.2. Методы решения сверхидентифицируемых систем
- •7.2.1. Двухшаговый метод наименьших квадратов
- •7.2.4. Исходные данные
- •7.2.2. Понятие о трехшаговом методе наименьших квадратов
- •7.2.3. Применение систем уравнений
- •Контрольные вопросы
- •Тесты для самоконтроля
- •Пример выполнения работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить парную линейную модель регрессии, рассчитать показатели тесноты связи по индивидуальным данным.
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя встроенный инструмент «Регрессия» ms excel, построить парную линейную модель регрессии, оценить результаты.
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •2. Оценка значимости. Точечная и интервальная оценки параметров уравнения регрессии
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить множественную линейную модель регрессии, рассчитать показатели тесноты связи по индивидуальным данным.
- •Пример и методические указания к выполнению работы.
- •2 Способ.
- •4 Способ.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Требуется проверить модель регрессии на гетероскедастичность остатков
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить уравнение тренда.
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Построить модель связи между экономическими переменными по данным временных рядов.
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •2. Автокорреляционные функции
- •2.1. Тест на автокорреляцию остатков трендов
- •3. Первые разности
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Список индивидуальных данных:
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи.
- •Пример и методические указания к выполнению работы.
- •2. Исходные данные
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Словарь основных терминов и определений (глоссарий)
- •Промежуточный тест по дисциплине «Эконометрика» Учебный модуль 3. Модульная единица 6.
- •Тестовые задания
- •Итоговый тест по дисциплине «Эконометрика»
- •1. Шкала проходных баллов по модулям
- •Модульная единица 2. Парная линейная регрессия.
- •Модульная единица 3. «Статистическая оценка достоверности выборочных показателей связи»
- •Модуль 2. Множественная регрессия и корреляция Модульная единица 5.1. Параметризация и спецификация уравнения множественной регрессии
- •Модуль 4. Системы эконометрических уравнений Модульная единица 7.1. Виды систем эконометрических уравнений и их идентификация. Косвенный метод наименьших квадратов
- •Модуль 4. Модульная единица 7.2. «Методы решения сверхидентифицируемых систем»
- •Контрольные работы промежуточного контроля Контрольная работа №1(модульные единицы 1, 2, 3)
- •Предмет и метод эконометрики.
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №2 (модульная единица 4)
- •5. Классификация нелинейных функций.
- •Контрольная работа № 3 (модуль 5, модульные единицы 5.1, 5.2)
- •Контрольная работа № 4 (модуль 7, модульные единицы 7.1, 7.2)
- •Контрольные вопросы итогового контроля
Контрольные вопросы к защите
Раскройте понятие «достоверность» применительно к параметрам взаимосвязи переменных.
С какой целью проводится F-тест уравнения регрессии?
На какие части раскладывается общий объем вариации результативного признака в ходе дисперсионного анализа регрессионной модели?
Назовите причины существования остаточной вариации.
В каком случае уравнение регрессии признается достоверным в целом?
С какой целью в регрессионном анализе используется критерий t-Стьюдента?
Что показывает средняя ошибка коэффициента корреляции (регрессии) и как ее рассчитать?
Что показывает доверительный интервал параметра связи?
Как определить доверительный интервал коэффициента регрессии?
В каком случае принимается гипотеза о достоверности коэффициента регрессии?
Способ оценки результатов
№ п/п |
Элементы выполнения работы и усвоения теоретического материала |
Максимальный балл |
1 |
Расчетная часть работы выполнена корректно и полностью |
2 |
2 |
Сделаны подробные выводы, в которых отражены выявленные закономерности |
1 |
3 |
Защита работы |
1 |
4 |
Соблюдение сроков защиты |
1 |
Итого |
х |
5 |
Лабораторная работа №4. «Построение парной линейной модели регрессии с использованием инструмента «Регрессия» MS EXCEL
Модульная единица 3.
Требования к содержанию, оформлению и порядку выполнения:
Для успешного выполнения работы студенты должны знать материал лекции по теме «Статистическая оценка достоверности выборочных показателей связи».
Теоретическая часть.
Как известно из курса математической статистики нулевая гипотеза принимается, если фактическое значение критерия не превышает его критическое значение при выбранном уровне его (теоретического значения критерия) значимости. С другой стороны, если известна значимость фактического значения критерия (выводится при реализации инструмента «Регрессия» MS EXCEL), тогда статистический вывод нужно делать следующим образом:
задать теоретический уровень значимости (наиболее часто применяются уровни – 1%, 5%, 0,01%)
сравнить фактическую значимость с теоретической:
если < – принимается альтернативная,
– нулевая гипотеза.
В регрессионном анализе при проверке значимости уравнения в целом или его параметров в качестве нулевой гипотезы выдвигается предположение об их недостоверности – равенстве нулю коэффициента корреляции (при оценке значимости уравнения в целом) или параметров. Следовательно, параметры или уравнение в целом будут значимы, только в том случае, если < .
Одним из показателей качества модели является средняя ошибка аппроксимации:
,
где - рассчитанные по уравнению регрессии прогнозные (предсказанные значения) для каждого значения независимой переменной.
Для прогнозирования считается приемлемым уровень средней ошибки аппроксимации 8-10%.