
- •Эконометрика
- •Лекция 1. Предмет и метод эконометрики. Ковариация, дисперсия и корреляция
- •1.1. Предмет и метод эконометрики
- •1.2. Выборочная ковариация.
- •1.3. Основные правила расчета ковариации.
- •1.4. Теоретическая ковариация.
- •1.5. Выборочная дисперсия. Правила расчета дисперсии.
- •1.6. Коэффициент корреляции.
- •1.7. Коэффициент частной корреляции.
- •Тест для самоконтроля
- •Лекция 2. Парная линейная регрессия.
- •2.1. Проблема оценивания линейной связи экономических переменных.
- •2.2. Модель парной линейной регрессии.
- •2.3. Регрессия по методу наименьших квадратов.
- •2.4. Интерпретация уравнения регрессии.
- •2.5. Качество оценки: коэффициент r2.
- •Тесты для самоконтроля
- •Лекция 3. Статистическая оценка достоверности выборочных показателей связи.
- •Оценка достоверности уравнения регрессии в целом
- •Определение средней ошибки, предельной ошибки и доверительных границ коэффициента корреляции
- •3.1. Оценка достоверности уравнения регрессии в целом
- •3.2. Определение средней ошибки, предельной ошибки и доверительных границ коэффициента корреляции
- •3.3. Проверка гипотезы и интервальная оценка коэффициента регрессии.
- •3.4. Средняя ошибка уравнения и интервальная оценка отдельных значений результативного признака.
- •Тесты для самоконтроля
- •Лекция 4. Нелинейная регрессия
- •4.1. Спецификация модели
- •4.2. Классификация нелинейных функций.
- •4.3. Отдельные виды нелинейных регрессий.
- •4.3.2. Равносторонняя гипербола.
- •4.3.3. Степенная функция.
- •4.4.Коэффициенты эластичности в нелинейных регрессиях.
- •4.5. Корреляция для нелинейной регрессии.
- •Тесты для самоконтроля
- •Лекция 5. Множественная регрессия и корреляция
- •Понятие множественной регрессии, и ее графическая интерпретация
- •Отбор факторов при построении модели.
- •Коллинеарность факторов. Методы преодоления межфакторной связи
- •Модульная единица 5.1. Параметризация и спецификация уравнения множественной регрессии
- •5.1.1. Понятие множественной регрессии, и ее графическая интерпретация
- •5.1.2. Отбор факторов при построении модели.
- •5.1.3. Коллинеарность факторов. Методы преодоления межфакторной связи
- •5.1.4. Параметризация уравнения множественной регрессии и его интерпретация
- •Тесты для самоконтроля
- •Модульная единица 5.2. Множественная и частная корреляция. Предпосылки мнк.
- •5.2.1.Множественная корреляция.
- •5.2.2. Скорректированный индекс детерминации (корреляции).
- •5.2.3. Частная корреляция.
- •5.2.4. Частные f- тесты
- •5.2.5. Предпосылки мнк.
- •Тесты для самоконтроля
- •Лекция 6. Моделирование динамических процессов
- •6.1. Элементы временного ряда
- •6.2. Автокорреляция
- •6.3. Выявление структуры временного ряда
- •6.4. Моделирование тенденции
- •6.5. Изучение взаимосвязи переменных по данным временных рядов
- •6.6. Критерий Дарбина-Уотсона
- •Тесты для самоконтроля
- •Лекция 7. Системы эконометрических уравнений
- •Модульная единица 7.1. Виды систем эконометрических уравнений и их идентификация. Косвенный метод наименьших квадратов
- •7.1.1. Понятие и необходимость применения систем уравнений
- •7.1.2. Косвенный метод наименьших квадратов
- •7.1.3. Проблема идентификации
- •Вопросы для повторения
- •Тесты для самоконтроля
- •Модульная единица 7.2. Методы решения сверхидентифицируемых систем
- •7.2.1. Двухшаговый метод наименьших квадратов
- •7.2.4. Исходные данные
- •7.2.2. Понятие о трехшаговом методе наименьших квадратов
- •7.2.3. Применение систем уравнений
- •Контрольные вопросы
- •Тесты для самоконтроля
- •Пример выполнения работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить парную линейную модель регрессии, рассчитать показатели тесноты связи по индивидуальным данным.
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя встроенный инструмент «Регрессия» ms excel, построить парную линейную модель регрессии, оценить результаты.
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •2. Оценка значимости. Точечная и интервальная оценки параметров уравнения регрессии
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить множественную линейную модель регрессии, рассчитать показатели тесноты связи по индивидуальным данным.
- •Пример и методические указания к выполнению работы.
- •2 Способ.
- •4 Способ.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Требуется проверить модель регрессии на гетероскедастичность остатков
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить уравнение тренда.
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Построить модель связи между экономическими переменными по данным временных рядов.
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •2. Автокорреляционные функции
- •2.1. Тест на автокорреляцию остатков трендов
- •3. Первые разности
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Список индивидуальных данных:
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи.
- •Пример и методические указания к выполнению работы.
- •2. Исходные данные
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Словарь основных терминов и определений (глоссарий)
- •Промежуточный тест по дисциплине «Эконометрика» Учебный модуль 3. Модульная единица 6.
- •Тестовые задания
- •Итоговый тест по дисциплине «Эконометрика»
- •1. Шкала проходных баллов по модулям
- •Модульная единица 2. Парная линейная регрессия.
- •Модульная единица 3. «Статистическая оценка достоверности выборочных показателей связи»
- •Модуль 2. Множественная регрессия и корреляция Модульная единица 5.1. Параметризация и спецификация уравнения множественной регрессии
- •Модуль 4. Системы эконометрических уравнений Модульная единица 7.1. Виды систем эконометрических уравнений и их идентификация. Косвенный метод наименьших квадратов
- •Модуль 4. Модульная единица 7.2. «Методы решения сверхидентифицируемых систем»
- •Контрольные работы промежуточного контроля Контрольная работа №1(модульные единицы 1, 2, 3)
- •Предмет и метод эконометрики.
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №2 (модульная единица 4)
- •5. Классификация нелинейных функций.
- •Контрольная работа № 3 (модуль 5, модульные единицы 5.1, 5.2)
- •Контрольная работа № 4 (модуль 7, модульные единицы 7.1, 7.2)
- •Контрольные вопросы итогового контроля
1.5. Выборочная дисперсия. Правила расчета дисперсии.
До сих пор термин "дисперсия" использовался в смысле теоретической дисперсии, то есть относящейся ко всей генеральной совокупности . Для целей, которые прояснятся при обсуждении регрессионного анализа, целесообразно ввести понятие выборочной дисперсии. Для выборки из п наблюдений х1,...хп выборочная дисперсия определяется как среднеквадратичное отклонение в выборке :
Var
(x
) =
2
9.
Сделаем три важных замечания:
Определенная таким образом выборочная дисперсия представляет собой смещенную оценку теоретической дисперсии. Выборочная дисперсия, определенная как
s2
=
(x
-
2
10.
является несмещенной оценкой 2. Отсюда следует, что ожидаемое значение величины Var (x) равно [(n - 1)/ n] 2 и что , следовательно, она имеет отрицательное смещение. Отметим, что если размер выборки п становится большим, то (п - 1)/п стремится к единице и, таким образом, математическое ожидание величины Var (x) стремится к 2. Можно показать, что ее предел по вероятности (plim) равен 2 и, следовательно, она является примером состоятельной оценки, которая смещена для небольших выборок.
Так как величина s2 является несмещенной, то в некоторых работах ее часто определяют как выборочную дисперсию и либо избегают ссылок на Var(x), либо дают ей какое-то другое название. В русскоязычной литературе величина Var (x) обычно называется выборочной дисперсией, а s2 -"исправленной" или несмещенной, выборочной дисперсией. К сожалению, общепринятой договоренности по этому поводу нет.
Поскольку указанная договоренность отсутствует, отсутствует и договоренность относительно условного обозначения данного понятия, и для этого используются самые различные символы. Мы условимся теоретическую (или генеральную) дисперсию переменной х обозначать как рор.var (x) или
. Если ясно, о какой переменной идет речь, то нижний индекс может быть опущен. Выборочную дисперсию будем обозначать как Var (х).
Почему выборочная дисперсия в среднем занижает значение теоретической дисперсии? Причина заключается в том, что она вычисляется как среднеквадратичное отклонение от выборочного среднего, а не от истинного значения. Так как выборочное среднее автоматически находится в центре выборки, то отклонения от него в среднем меньше отклонений от теоретического среднего значения.
Существует несколько простых и очень полезных правил для расчета дисперсии, являющихся аналогами правил для ковариации, рассмотренных в разделе 2.
Правило дисперсии 1.
Если у = v + w , то Var (y) = Var (v) + Var (w) + 2 Cov (v,w) 11.
Правило дисперсии 2.
Если y = a z, где а является постоянной, то Var (y) = a2 Var (z) 12.
Правило дисперсии 3.
Если у = а , где а является постоянной, то Var (y) = 0 13.
Правило дисперсии 4.
Если у = v + a , где a является постоянной, то Var (y) = Var (v). 14.
Кроме того, заметим, что дисперсия переменной х может рассматриваться как ковариация между двумя величинами х :
Var
(x)
=
= Cov
(x,
x)
15.
Учитывая это правило, мы можем воспользоваться правилами расчета выборочной ковариации, чтобы вывести правила расчета дисперсии. Кроме того, мы можем получить другую формулу для представления Var (x), используя соотношение (15) для выборочной ковариации.
Var
( x
) =
16.
Если две переменные независимы и, следовательно, их совокупная ковариация равняется нулю, то теоретическая дисперсия суммы этих переменных будет равна сумме их теоретических дисперсий :
pop.var (x
+ y ) = pop.var (x) + pop. var (y) + 2 pop.cov (x , y ) = pop.var (x)
+ + pop.var (y ) =
+
17.
Из данного
результата можно получить общее правило
о том, что теоретическая дисперсия
суммы любого числа переменных равняется
сумме их дисперсий при условии, что
наблюдения независимы друг от друга.
При этом можно показать, что если
случайная переменная х
имеет дисперсию 2,
то дисперсия выборочного среднего
будет равна
2/
п
, где п
- число наблюдений в выборке :
pop.var (
)
= pop.var
var
( x1
+ ... + x
var
(x1)
+...
+ pop.var
(x
18.