- •Эконометрика
- •Лекция 1. Предмет и метод эконометрики. Ковариация, дисперсия и корреляция
- •1.1. Предмет и метод эконометрики
- •1.2. Выборочная ковариация.
- •1.3. Основные правила расчета ковариации.
- •1.4. Теоретическая ковариация.
- •1.5. Выборочная дисперсия. Правила расчета дисперсии.
- •1.6. Коэффициент корреляции.
- •1.7. Коэффициент частной корреляции.
- •Тест для самоконтроля
- •Лекция 2. Парная линейная регрессия.
- •2.1. Проблема оценивания линейной связи экономических переменных.
- •2.2. Модель парной линейной регрессии.
- •2.3. Регрессия по методу наименьших квадратов.
- •2.4. Интерпретация уравнения регрессии.
- •2.5. Качество оценки: коэффициент r2.
- •Тесты для самоконтроля
- •Лекция 3. Статистическая оценка достоверности выборочных показателей связи.
- •Оценка достоверности уравнения регрессии в целом
- •Определение средней ошибки, предельной ошибки и доверительных границ коэффициента корреляции
- •3.1. Оценка достоверности уравнения регрессии в целом
- •3.2. Определение средней ошибки, предельной ошибки и доверительных границ коэффициента корреляции
- •3.3. Проверка гипотезы и интервальная оценка коэффициента регрессии.
- •3.4. Средняя ошибка уравнения и интервальная оценка отдельных значений результативного признака.
- •Тесты для самоконтроля
- •Лекция 4. Нелинейная регрессия
- •4.1. Спецификация модели
- •4.2. Классификация нелинейных функций.
- •4.3. Отдельные виды нелинейных регрессий.
- •4.3.2. Равносторонняя гипербола.
- •4.3.3. Степенная функция.
- •4.4.Коэффициенты эластичности в нелинейных регрессиях.
- •4.5. Корреляция для нелинейной регрессии.
- •Тесты для самоконтроля
- •Лекция 5. Множественная регрессия и корреляция
- •Понятие множественной регрессии, и ее графическая интерпретация
- •Отбор факторов при построении модели.
- •Коллинеарность факторов. Методы преодоления межфакторной связи
- •Модульная единица 5.1. Параметризация и спецификация уравнения множественной регрессии
- •5.1.1. Понятие множественной регрессии, и ее графическая интерпретация
- •5.1.2. Отбор факторов при построении модели.
- •5.1.3. Коллинеарность факторов. Методы преодоления межфакторной связи
- •5.1.4. Параметризация уравнения множественной регрессии и его интерпретация
- •Тесты для самоконтроля
- •Модульная единица 5.2. Множественная и частная корреляция. Предпосылки мнк.
- •5.2.1.Множественная корреляция.
- •5.2.2. Скорректированный индекс детерминации (корреляции).
- •5.2.3. Частная корреляция.
- •5.2.4. Частные f- тесты
- •5.2.5. Предпосылки мнк.
- •Тесты для самоконтроля
- •Лекция 6. Моделирование динамических процессов
- •6.1. Элементы временного ряда
- •6.2. Автокорреляция
- •6.3. Выявление структуры временного ряда
- •6.4. Моделирование тенденции
- •6.5. Изучение взаимосвязи переменных по данным временных рядов
- •6.6. Критерий Дарбина-Уотсона
- •Тесты для самоконтроля
- •Лекция 7. Системы эконометрических уравнений
- •Модульная единица 7.1. Виды систем эконометрических уравнений и их идентификация. Косвенный метод наименьших квадратов
- •7.1.1. Понятие и необходимость применения систем уравнений
- •7.1.2. Косвенный метод наименьших квадратов
- •7.1.3. Проблема идентификации
- •Вопросы для повторения
- •Тесты для самоконтроля
- •Модульная единица 7.2. Методы решения сверхидентифицируемых систем
- •7.2.1. Двухшаговый метод наименьших квадратов
- •7.2.4. Исходные данные
- •7.2.2. Понятие о трехшаговом методе наименьших квадратов
- •7.2.3. Применение систем уравнений
- •Контрольные вопросы
- •Тесты для самоконтроля
- •Пример выполнения работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить парную линейную модель регрессии, рассчитать показатели тесноты связи по индивидуальным данным.
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя встроенный инструмент «Регрессия» ms excel, построить парную линейную модель регрессии, оценить результаты.
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •2. Оценка значимости. Точечная и интервальная оценки параметров уравнения регрессии
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить множественную линейную модель регрессии, рассчитать показатели тесноты связи по индивидуальным данным.
- •Пример и методические указания к выполнению работы.
- •2 Способ.
- •4 Способ.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Требуется проверить модель регрессии на гетероскедастичность остатков
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить уравнение тренда.
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Построить модель связи между экономическими переменными по данным временных рядов.
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •2. Автокорреляционные функции
- •2.1. Тест на автокорреляцию остатков трендов
- •3. Первые разности
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Список индивидуальных данных:
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи.
- •Пример и методические указания к выполнению работы.
- •2. Исходные данные
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Словарь основных терминов и определений (глоссарий)
- •Промежуточный тест по дисциплине «Эконометрика» Учебный модуль 3. Модульная единица 6.
- •Тестовые задания
- •Итоговый тест по дисциплине «Эконометрика»
- •1. Шкала проходных баллов по модулям
- •Модульная единица 2. Парная линейная регрессия.
- •Модульная единица 3. «Статистическая оценка достоверности выборочных показателей связи»
- •Модуль 2. Множественная регрессия и корреляция Модульная единица 5.1. Параметризация и спецификация уравнения множественной регрессии
- •Модуль 4. Системы эконометрических уравнений Модульная единица 7.1. Виды систем эконометрических уравнений и их идентификация. Косвенный метод наименьших квадратов
- •Модуль 4. Модульная единица 7.2. «Методы решения сверхидентифицируемых систем»
- •Контрольные работы промежуточного контроля Контрольная работа №1(модульные единицы 1, 2, 3)
- •Предмет и метод эконометрики.
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №2 (модульная единица 4)
- •5. Классификация нелинейных функций.
- •Контрольная работа № 3 (модуль 5, модульные единицы 5.1, 5.2)
- •Контрольная работа № 4 (модуль 7, модульные единицы 7.1, 7.2)
- •Контрольные вопросы итогового контроля
6.2. Автокорреляция
Если временной ряд содержит только случайную компоненту, то уровни временного ряда будут независимы друг от друга. Если же временной ряд содержит тенденцию или циклические колебания, то значения каждого последующего уровня зависят от предыдущих.
Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда. Автокорреляцию можно измерить количественно. Для этого рассчитывают линейный коэффициент корреляции между уровнями исходного временного ряда и уровнями этого же ряда, сдвинутыми на один или несколько шагов во времени.
Например, разумно предположить, что доходы домохозяйства в текущем году зависят от доходов домохозяйства предыдущих лет. Определим коэффициент корреляции между ними. Известна рабочая формула линейного коэффициента корреляции
(6.1.1)
В качестве фактора мы рассмотрим доходы предшествующего периода (уt-1), а в качестве результата – доходы текущего периода (уt), тогда приведенная выше формула примет вид
(6.1.2.)
где
- средний уровень по исходному ряду динамики, определенный без учета первого уровня,
а - это средний уровень по ряду динамики, сдвинутому на одну дату.
Расстояние между уровнями временного ряда, для которых определяется коэффициент корреляции, называется лагом. Приведенная выше формула определяет величину автокорреляции между соседними уровнями, то есть при лаге = 1, поэтому этот коэффициент называют коэффициентом автокорреляции первого порядка. Допустим, r1 = 0,98. Полученное значение свидетельствует об очень сильной зависимости между доходами текущего и предшествующего периода и, следовательно, о наличии в ряду сильной линейной тенденции.
Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями со сдвигом на две даты, то есть с лагом 2 и т.д.
С увеличением лага число пар, по которым рассчитывается коэффициент автокорреляции, уменьшается и, следовательно, снижается достоверность коэффициентов. Поэтому для обеспечения статистической достоверности лаг не должен быть больше, чем п / 4, где п – число уровней.
При анализе коэффициентов автокорреляции следует помнить следующее:
он определяется по формуле линейного коэффициента корреляции, таким образом, он измеряет тесноту только линейной связи текущего и предыдущего уровней временного ряда. Для временных, рядов, имеющих сильную нелинейную тенденцию, коэффициент автокорреляции уровней может быть близким к нулю;
Знак коэффициента автокорреляции не указывает на направление тенденции в исходном ряду данных (возрастание или убывание). Большинство временных рядов экономических переменных содержат положительную автокорреляцию уровней, но при этом сам ряд может иметь и отрицательную тенденцию.
Если расположить коэффициенты по величине лага (то есть коэффициенты первого порядка, второго, третьего и т.д.), то мы получим автокорреляционную функцию временного ряда. График зависимости величины коэффициента автокорреляции от лага называют коррелограммой.