
- •Эконометрика
- •Лекция 1. Предмет и метод эконометрики. Ковариация, дисперсия и корреляция
- •1.1. Предмет и метод эконометрики
- •1.2. Выборочная ковариация.
- •1.3. Основные правила расчета ковариации.
- •1.4. Теоретическая ковариация.
- •1.5. Выборочная дисперсия. Правила расчета дисперсии.
- •1.6. Коэффициент корреляции.
- •1.7. Коэффициент частной корреляции.
- •Тест для самоконтроля
- •Лекция 2. Парная линейная регрессия.
- •2.1. Проблема оценивания линейной связи экономических переменных.
- •2.2. Модель парной линейной регрессии.
- •2.3. Регрессия по методу наименьших квадратов.
- •2.4. Интерпретация уравнения регрессии.
- •2.5. Качество оценки: коэффициент r2.
- •Тесты для самоконтроля
- •Лекция 3. Статистическая оценка достоверности выборочных показателей связи.
- •Оценка достоверности уравнения регрессии в целом
- •Определение средней ошибки, предельной ошибки и доверительных границ коэффициента корреляции
- •3.1. Оценка достоверности уравнения регрессии в целом
- •3.2. Определение средней ошибки, предельной ошибки и доверительных границ коэффициента корреляции
- •3.3. Проверка гипотезы и интервальная оценка коэффициента регрессии.
- •3.4. Средняя ошибка уравнения и интервальная оценка отдельных значений результативного признака.
- •Тесты для самоконтроля
- •Лекция 4. Нелинейная регрессия
- •4.1. Спецификация модели
- •4.2. Классификация нелинейных функций.
- •4.3. Отдельные виды нелинейных регрессий.
- •4.3.2. Равносторонняя гипербола.
- •4.3.3. Степенная функция.
- •4.4.Коэффициенты эластичности в нелинейных регрессиях.
- •4.5. Корреляция для нелинейной регрессии.
- •Тесты для самоконтроля
- •Лекция 5. Множественная регрессия и корреляция
- •Понятие множественной регрессии, и ее графическая интерпретация
- •Отбор факторов при построении модели.
- •Коллинеарность факторов. Методы преодоления межфакторной связи
- •Модульная единица 5.1. Параметризация и спецификация уравнения множественной регрессии
- •5.1.1. Понятие множественной регрессии, и ее графическая интерпретация
- •5.1.2. Отбор факторов при построении модели.
- •5.1.3. Коллинеарность факторов. Методы преодоления межфакторной связи
- •5.1.4. Параметризация уравнения множественной регрессии и его интерпретация
- •Тесты для самоконтроля
- •Модульная единица 5.2. Множественная и частная корреляция. Предпосылки мнк.
- •5.2.1.Множественная корреляция.
- •5.2.2. Скорректированный индекс детерминации (корреляции).
- •5.2.3. Частная корреляция.
- •5.2.4. Частные f- тесты
- •5.2.5. Предпосылки мнк.
- •Тесты для самоконтроля
- •Лекция 6. Моделирование динамических процессов
- •6.1. Элементы временного ряда
- •6.2. Автокорреляция
- •6.3. Выявление структуры временного ряда
- •6.4. Моделирование тенденции
- •6.5. Изучение взаимосвязи переменных по данным временных рядов
- •6.6. Критерий Дарбина-Уотсона
- •Тесты для самоконтроля
- •Лекция 7. Системы эконометрических уравнений
- •Модульная единица 7.1. Виды систем эконометрических уравнений и их идентификация. Косвенный метод наименьших квадратов
- •7.1.1. Понятие и необходимость применения систем уравнений
- •7.1.2. Косвенный метод наименьших квадратов
- •7.1.3. Проблема идентификации
- •Вопросы для повторения
- •Тесты для самоконтроля
- •Модульная единица 7.2. Методы решения сверхидентифицируемых систем
- •7.2.1. Двухшаговый метод наименьших квадратов
- •7.2.4. Исходные данные
- •7.2.2. Понятие о трехшаговом методе наименьших квадратов
- •7.2.3. Применение систем уравнений
- •Контрольные вопросы
- •Тесты для самоконтроля
- •Пример выполнения работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить парную линейную модель регрессии, рассчитать показатели тесноты связи по индивидуальным данным.
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя встроенный инструмент «Регрессия» ms excel, построить парную линейную модель регрессии, оценить результаты.
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •2. Оценка значимости. Точечная и интервальная оценки параметров уравнения регрессии
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить множественную линейную модель регрессии, рассчитать показатели тесноты связи по индивидуальным данным.
- •Пример и методические указания к выполнению работы.
- •2 Способ.
- •4 Способ.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Требуется проверить модель регрессии на гетероскедастичность остатков
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить уравнение тренда.
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Построить модель связи между экономическими переменными по данным временных рядов.
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •2. Автокорреляционные функции
- •2.1. Тест на автокорреляцию остатков трендов
- •3. Первые разности
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Список индивидуальных данных:
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи.
- •Пример и методические указания к выполнению работы.
- •2. Исходные данные
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Словарь основных терминов и определений (глоссарий)
- •Промежуточный тест по дисциплине «Эконометрика» Учебный модуль 3. Модульная единица 6.
- •Тестовые задания
- •Итоговый тест по дисциплине «Эконометрика»
- •1. Шкала проходных баллов по модулям
- •Модульная единица 2. Парная линейная регрессия.
- •Модульная единица 3. «Статистическая оценка достоверности выборочных показателей связи»
- •Модуль 2. Множественная регрессия и корреляция Модульная единица 5.1. Параметризация и спецификация уравнения множественной регрессии
- •Модуль 4. Системы эконометрических уравнений Модульная единица 7.1. Виды систем эконометрических уравнений и их идентификация. Косвенный метод наименьших квадратов
- •Модуль 4. Модульная единица 7.2. «Методы решения сверхидентифицируемых систем»
- •Контрольные работы промежуточного контроля Контрольная работа №1(модульные единицы 1, 2, 3)
- •Предмет и метод эконометрики.
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №2 (модульная единица 4)
- •5. Классификация нелинейных функций.
- •Контрольная работа № 3 (модуль 5, модульные единицы 5.1, 5.2)
- •Контрольная работа № 4 (модуль 7, модульные единицы 7.1, 7.2)
- •Контрольные вопросы итогового контроля
2.5. Качество оценки: коэффициент r2.
Цель регрессионного анализа состоит в объяснении поведения зависимой переменной у. В любой данной выборке у оказывается сравнительно низким в одних наблюдениях и сравнительно высоким — в других. Мы хотим знать, почему это так. Разброс значений у в любой выборке можно суммарно описать с помощью выборочной дисперсии Var (у).
В парном регрессионном анализе мы пытаемся объяснить поведение у путем определения регрессионной зависимости у от выбранной независимой переменной х. После построения уравнения регрессии мы можем разбить значение уi в каждом наблюдении на две составляющих — и еi.
yi = + ei (2.18)
Величина — расчетное значение у в наблюдении i — это то значение, которое имел бы у при условии, что уравнение регрессии было правильным, и отсутствии случайного фактора. Это, иными словами, величина у, спрогнозированная по значению x в данном наблюдении. Остаток ei есть расхождение между фактическим и спрогнозированным значениями величины y. Это та часть у, которую мы не можем объяснить с помощью уравнения регрессии. Используя уравнение (2.18), разложим дисперсию у:
Var (y) = Var ( + e ) = Var ( ) + Var(e) + 2Cov ( ,e) (2.19)
Далее, Cov ( ,е) должна быть равна нулю. Следовательно, мы получаем:
Var (y) = Var ( ) + Var (e) (2.20)
Это означает, что мы можем разложить Var (у) на две части: Var ( ) — часть, которая «объясняется» уравнением регрессии в вышеописанном смысле, и Var (е) — «необъясненную» часть.
Согласно (2.20), Var ( )/ Var (у) — это часть дисперсии y, объясненная уравнением регрессии. Это отношение известно как коэффициент детерминации, и его обычно обозначают R 2.
(2.21)
что равносильно
(2.22)
Слова «объясненный» и «необъясненный» взяты в кавычки, так как объяснение, в сущности, может быть мнимым. В действительности у может зависеть от какой-то другой переменной z, и х может действовать как величина, замещающая z . Поэтому вместо слова «объясненный» здесь лучше употреблять выражение «представляющийся объясненным».
Максимальное значение коэффициента детерминации равно единице. Это происходит в том случае, когда линия регрессии точно соответствует всем наблюдениям, так что = уi для всех i и все остатки равны нулю. Тогда Var ( ) = Var (у), Var (е) = О и R2 = 1.
Если в выборке отсутствует видимая связь между у и х, то коэффициент R2 будет близок к нулю.
При прочих равных условиях желательно, чтобы коэффициент R2 был как можно больше. В частности, мы заинтересованы в таком выборе коэффициентов а и b, чтобы максимизировать R2. Не противоречит ли это нашему критерию, в соответствии с которым а и b должны быть выбраны таким образом, чтобы минимизировать сумму квадратов остатков? Нет, легко показать, что эти критерии эквивалентны, если (2.22) используется как определение коэффициента R2. Отметим сначала, что
ei = yi - = yi - a -bxi (2.23)
откуда, беря среднее значение еi по выборке и используя уравнение (2.10), получим:
(2.24)
Следовательно,
(2.25)
Отсюда следует, что принцип минимизации
суммы квадратов остатков эквивалентен
минимизации дисперсии остатков при
условии выполнения (2.10). Однако если мы
минимизируем Var(e),
то при этом в соответствии с (2.22)
автоматически максимизируется коэффициент
R.2.
Альтернативное представление коэффициента R2
На интуитивном
уровне представляется очевидным, что
чем больше соответствие, обеспечиваемое
уравнением регрессии, тем больше должен
быть коэффициент корреляции для
фактических и прогнозных значений y,
и наоборот. Покажем, что R2
фактически равен квадрату такого
коэффициента корреляции между у
и
, который мы обозначим
(заметим, что Cov
(е, у)
= 0.
(2.26)
Вопросы для повторения
1. Раскройте понятие уравнения регрессии.
2. Что такое «остатки» в регрессионной модели, и каковы причины их существования?
3. Поясните сущность метода наименьших квадратов.
4. Как выглядит система нормальных уравнений в случае парной линейной регрессии?
5. Какие способы определения коэффициента регрессии Вы знаете?
6. Какова интерпретация коэффициента регрессии?
7. Есть ли смысловая интерпретация у свободного члена уравнения парной линейной регрессии?
8. Что показывает коэффициент детерминации?
9. Напишите смысловую формулу коэффициента детерминации.
10. Как связан коэффициент детерминации с линейным коэффициентом корреляции?
Резюме по модульной единице 2.
Простейшей математической моделью корреляционной связи является линейная связь между двумя признаками – парная линейная регрессия. Среди множества факторов, определяющих вариацию результативного признака, выделяют основной (главный) фактор. Линейная форма связи имеет наиболее широкое применение потому, что многие зависимости, нелинейные на большом протяжении значений фактора, близки к линейным на реально наблюдаемом интервале. Кроме того, парная корреляция рассматривается как начальный этап в изучении сложных многофакторных связей.