- •Эконометрика
- •Лекция 1. Предмет и метод эконометрики. Ковариация, дисперсия и корреляция
- •1.1. Предмет и метод эконометрики
- •1.2. Выборочная ковариация.
- •1.3. Основные правила расчета ковариации.
- •1.4. Теоретическая ковариация.
- •1.5. Выборочная дисперсия. Правила расчета дисперсии.
- •1.6. Коэффициент корреляции.
- •1.7. Коэффициент частной корреляции.
- •Тест для самоконтроля
- •Лекция 2. Парная линейная регрессия.
- •2.1. Проблема оценивания линейной связи экономических переменных.
- •2.2. Модель парной линейной регрессии.
- •2.3. Регрессия по методу наименьших квадратов.
- •2.4. Интерпретация уравнения регрессии.
- •2.5. Качество оценки: коэффициент r2.
- •Тесты для самоконтроля
- •Лекция 3. Статистическая оценка достоверности выборочных показателей связи.
- •Оценка достоверности уравнения регрессии в целом
- •Определение средней ошибки, предельной ошибки и доверительных границ коэффициента корреляции
- •3.1. Оценка достоверности уравнения регрессии в целом
- •3.2. Определение средней ошибки, предельной ошибки и доверительных границ коэффициента корреляции
- •3.3. Проверка гипотезы и интервальная оценка коэффициента регрессии.
- •3.4. Средняя ошибка уравнения и интервальная оценка отдельных значений результативного признака.
- •Тесты для самоконтроля
- •Лекция 4. Нелинейная регрессия
- •4.1. Спецификация модели
- •4.2. Классификация нелинейных функций.
- •4.3. Отдельные виды нелинейных регрессий.
- •4.3.2. Равносторонняя гипербола.
- •4.3.3. Степенная функция.
- •4.4.Коэффициенты эластичности в нелинейных регрессиях.
- •4.5. Корреляция для нелинейной регрессии.
- •Тесты для самоконтроля
- •Лекция 5. Множественная регрессия и корреляция
- •Понятие множественной регрессии, и ее графическая интерпретация
- •Отбор факторов при построении модели.
- •Коллинеарность факторов. Методы преодоления межфакторной связи
- •Модульная единица 5.1. Параметризация и спецификация уравнения множественной регрессии
- •5.1.1. Понятие множественной регрессии, и ее графическая интерпретация
- •5.1.2. Отбор факторов при построении модели.
- •5.1.3. Коллинеарность факторов. Методы преодоления межфакторной связи
- •5.1.4. Параметризация уравнения множественной регрессии и его интерпретация
- •Тесты для самоконтроля
- •Модульная единица 5.2. Множественная и частная корреляция. Предпосылки мнк.
- •5.2.1.Множественная корреляция.
- •5.2.2. Скорректированный индекс детерминации (корреляции).
- •5.2.3. Частная корреляция.
- •5.2.4. Частные f- тесты
- •5.2.5. Предпосылки мнк.
- •Тесты для самоконтроля
- •Лекция 6. Моделирование динамических процессов
- •6.1. Элементы временного ряда
- •6.2. Автокорреляция
- •6.3. Выявление структуры временного ряда
- •6.4. Моделирование тенденции
- •6.5. Изучение взаимосвязи переменных по данным временных рядов
- •6.6. Критерий Дарбина-Уотсона
- •Тесты для самоконтроля
- •Лекция 7. Системы эконометрических уравнений
- •Модульная единица 7.1. Виды систем эконометрических уравнений и их идентификация. Косвенный метод наименьших квадратов
- •7.1.1. Понятие и необходимость применения систем уравнений
- •7.1.2. Косвенный метод наименьших квадратов
- •7.1.3. Проблема идентификации
- •Вопросы для повторения
- •Тесты для самоконтроля
- •Модульная единица 7.2. Методы решения сверхидентифицируемых систем
- •7.2.1. Двухшаговый метод наименьших квадратов
- •7.2.4. Исходные данные
- •7.2.2. Понятие о трехшаговом методе наименьших квадратов
- •7.2.3. Применение систем уравнений
- •Контрольные вопросы
- •Тесты для самоконтроля
- •Пример выполнения работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить парную линейную модель регрессии, рассчитать показатели тесноты связи по индивидуальным данным.
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя встроенный инструмент «Регрессия» ms excel, построить парную линейную модель регрессии, оценить результаты.
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •2. Оценка значимости. Точечная и интервальная оценки параметров уравнения регрессии
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить множественную линейную модель регрессии, рассчитать показатели тесноты связи по индивидуальным данным.
- •Пример и методические указания к выполнению работы.
- •2 Способ.
- •4 Способ.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Требуется проверить модель регрессии на гетероскедастичность остатков
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Используя средства ms excel построить уравнение тренда.
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи. Построить модель связи между экономическими переменными по данным временных рядов.
- •Пример и методические указания к выполнению работы.
- •1. Исходные данные
- •2. Автокорреляционные функции
- •2.1. Тест на автокорреляцию остатков трендов
- •3. Первые разности
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Список индивидуальных данных:
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Пример и методические указания к выполнению работы.
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Общая постановка задачи.
- •Пример и методические указания к выполнению работы.
- •2. Исходные данные
- •Контрольные вопросы к защите
- •Способ оценки результатов
- •Словарь основных терминов и определений (глоссарий)
- •Промежуточный тест по дисциплине «Эконометрика» Учебный модуль 3. Модульная единица 6.
- •Тестовые задания
- •Итоговый тест по дисциплине «Эконометрика»
- •1. Шкала проходных баллов по модулям
- •Модульная единица 2. Парная линейная регрессия.
- •Модульная единица 3. «Статистическая оценка достоверности выборочных показателей связи»
- •Модуль 2. Множественная регрессия и корреляция Модульная единица 5.1. Параметризация и спецификация уравнения множественной регрессии
- •Модуль 4. Системы эконометрических уравнений Модульная единица 7.1. Виды систем эконометрических уравнений и их идентификация. Косвенный метод наименьших квадратов
- •Модуль 4. Модульная единица 7.2. «Методы решения сверхидентифицируемых систем»
- •Контрольные работы промежуточного контроля Контрольная работа №1(модульные единицы 1, 2, 3)
- •Предмет и метод эконометрики.
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №1(модульные единицы 1, 2, 3)
- •Контрольная работа №2 (модульная единица 4)
- •5. Классификация нелинейных функций.
- •Контрольная работа № 3 (модуль 5, модульные единицы 5.1, 5.2)
- •Контрольная работа № 4 (модуль 7, модульные единицы 7.1, 7.2)
- •Контрольные вопросы итогового контроля
2.4. Интерпретация уравнения регрессии.
Интерпретации уравнения регрессии состоит в словесном истолковании уравнения так, чтобы это было понятно человеку, не являющемуся специалистом в области статистики. Проиллюстрируем это моделью регрессии для функции спроса, т. е. регрессией между расходами потребителя на питание (у) и располагаемым личным доходом (x) по данным для США за период с 1959 по 1983 г. Данные представлены в виде графика (рис.2.6).
Предположим, что истинная модель описывается следующим выражением:
у = + х + и (2.15)
и оценена регрессия
= 55,3 + 0,093х . (2.16)
Полученный результат можно истолковать следующим образом. Коэффициент при х (коэффициент наклона) показывает, что если х увеличивается на одну единицу, то у возрастает на 0,093 единицы. Как х, так и у измеряются в миллиардах долларов в постоянных ценах; таким образом, коэффициент наклона показывает, что если доход увеличивается на 1 млрд. долл., то расходы на питание возрастают на 93 млн. долл. Другими словами, из каждого дополнительного доллара дохода 9,3 цента будут израсходованы на питание.
Что можно сказать о постоянной в уравнении, равной 55,3? Формально говоря, она показывает прогнозируемый уровень у, когда х = 0. Иногда это имеет ясный смысл, иногда нет. Если х = 0 находится достаточно далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам; даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантии, что так же будет при экстраполяции влево или вправо (рис.2.6).
В рассматриваемом случае экстраполяция к вертикальной оси приводит к выводу о том, что если доход был бы равен нулю, то расходы на питание составили бы 55,3 млрд. долл. Такое толкование может быть правдоподобным в отношении отдельного человека, так как он может израсходовать на питание накопленные или одолженные средства. Однако оно не имеет никакого смысла применительно к совокупности. В данном случае константа выполняет единственную функцию: она позволяет определить положение линии регрессии на графике. Можно привести пример постоянной, которая имеет ясный смысл. По этим же данным (приложение 1) можно определить регрессионную зависимость расходов на питание у от времени, определенного как t = 1 для 1959 г., t =2 для 1960 г. и т.д. Она задана уравнением:
= 95,3 + 2,53 t. (2.17)
В этом уравнении постоянную 95,3 можно объяснить как расходы на питание при t = 0 для 1958 г.
При интерпретации уравнения регрессии чрезвычайно важно помнить о трех вещах. Во-первых, а является лишь оценкой , а b — оценкой . Поэтому вся интерпретация в действительности представляет собой лишь оценку. Во-вторых, уравнение регрессии отражает только общую тенденцию для выборки. При этом каждое отдельное наблюдение подвержено воздействию случайностей. В-третьих, верность интерпретации зависит от правильности спецификации уравнения.
В сущности, мы построили довольно наивную зависимость для функции спроса. Мы будем неоднократно возвращаться к этому в следующих разделах, уточняя как определение, так и статистические методы, используемые для оценки коэффициентов уравнения.
Подводя итог сказанному, можно представить интерпретацию линейного уравнения регрессии в виде реализации следующих шагов.
Во-первых, можно сказать, что увеличение х на одну единицу (в единицах измерения переменной х) приведет к увеличению значения у на b единиц (в единицах измерения переменной y). Вторым шагом является проверка, каковы действительно единицы измерения х и у, и замена слова «единица» фактическим количеством. Третьим шагом является проверка возможности более простого выражения результата, который может оказаться не вполне удобным. В примере, приведенном в данном разделе, в качестве единицы измерения для х и у использовались миллиарды долларов, что позволило произвести очевидные упрощения.
Постоянная а дает прогнозируемое значение y (в единицах y), если х= 0. Это может иметь или не иметь ясного смысла в зависимости от конкретной ситуации.