
- •1.Парна лінійна регресія 26
- •Аналіз якості моделі: перевірка статистичної значущості оцінок параметрів економетричної моделі.
- •Визначення коефіцієнта еластичності
- •3.Методи прогнозування часових рядів: методи соціально - економічного прогнозування.
- •1. Основні задачі економетрії.
- •2. Емпірична модель множинної лінійної регресії.
- •3. Гетероскедастичність і зважений метод найменших квадратів.
- •1. Особливості економічних спостережень і вимірів.
- •2.Парна лінійна регресія.
- •3. Розрахунок довірчих інтервалів для оцінок параметрів із заданою надійністю.
- •Визначення параметрів вибраного рівняння.
- •Визначення коефіцієнта еластичності
- •Розрахунок прогнозного значення регресанду та побудова для нього із заданим рівнем значущості довірчих інтервалів.
- •1.Особливості математичного моделювання
- •2.Проведення кореляційного аналізу за допомогою ms Excel
- •3. Методи прогнозування часових рядів: методи соціально-економічного прогнозування
- •Основні дефініції економіко-математичного моделювання.
- •Узагальнений метод найменших квадратів.
- •Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами.
- •1.Парна лінійна регресія
- •2.Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера
- •3.Перевірка гіпотези про існування тренда
- •1.Сутність моделювання як методу наукового пізнання.???
- •3.Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за механічними методами.
- •Особливості математичного моделювання.
- •2.Проведення кореляційного аналізу за допомогою Microsoft Excel.
- •3.Методи прогнозування часових рядів: методи соціально-економічного прогнозування.
- •1. Етапи економіко-математичного моделювання
- •2. Прогнозування значень залежної змінної
- •3. Гетероскедастичність і зважений метод найменших квадратів
- •Елементи класифікації економіко-математичних моделей
- •2. Специфікація моделі
- •3. Розрахунок прогнозного значення регресанду та побудова для нього із заданим рівнем значущості довірчих інтервалів
- •Принципи математичного моделювання.
- •2.Загальна лінійна економетрична модель.
- •1.Основні дефініції економіко-математичного моделювання
- •2. Узагальнений метод найменших квадратів
- •3. Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами
- •1.Особливості економічних спостережень і вимірів.
- •2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
- •3.Основні поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду.
- •Основні задачі економетрії
- •Розрахунок довірчих інтервалів для оцінок параметрів із заданою надійністю
- •Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за середніми характеристиками.
- •1.Парна лінійна регресія
- •2.Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера.
- •3.Перевірка гіпотези про існування тренда
- •Метод найменших квадратів
- •Визначення дисперсій оцінок параметрів та їх стандартних помилок.
- •1.Випадкові збудники в рівнянні лінійної регресії.
- •2.Побудова моделі множинної регресії.
- •1.Етапи побудови економетричної моделі.
- •2. Визначення часткових коефіцієнтів еластичності.
- •3. Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами.
- •2. Емпірична модель множинної лінійної регресії.
- •Визначення параметрів вибраного рівняння
- •Суть гетероскедастичності
- •3.Основні аспекти поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду
- •1. Аналіз якості моделі: перевірка загальної якості рівняння регресії.
- •2. Моделі з порушенням передумов використання звичайного методу найменших квадратів.
- •3. .Перевірка гіпотези про існування тренда.
- •Аналіз якості моделі: довірчі інтервали для оцінок параметрів економетричної моделі.
- •2.Побудова моделі множинної регресії
- •3.Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за середніми характеристиками.
- •Специфікаціямоделі.
- •Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами.
- •1. Сутність моделювання як методу наукового пізнання.
- •2.Гомоскедастичні та гетероскедастичні моделі.
- •1.Елементи класифікації економіко-математичних моделей.
- •3.Узагальнений метод найменших квадратів.
- •Особливості математичного моделювання.
- •Аналіз якості моделі: перевірка загальної якості рівняння регресії.
- •Визначення дисперсії оцінок параметрів та їх стандартних помилок.
- •1. Принципи математичного моделювання.
- •2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
- •1.Основні дефініції економіко-математичного моделювання.
- •2. Аналіз якості моделі: перевірка статистичної значущості оцінок параметрів економетричної моделі.
- •3. Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера.
- •1. Етапи економіко-математичного моделювання
- •2. Прогнозування значень залежної змінної.
- •3. Моделі з порушенням передумов використання звичайного методу найменших квадратів.
- •2.Умови Гауса-Маркова.
- •3.Загальна лінійна економетрична модель.
- •Основні задачі економетрії
- •Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера.
- •Основні поняття та попередній аналіз рядів динаміки: поняття часового ряду
- •1. Сутність моделювання як методу наукового пізнання.
- •2. Умови Гауса-Маркова.
- •3.Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за механічними методами.
- •1. Етапи економіко-математичного моделювання
- •2. Прогнозування значень залежної змінної
- •3. Гетероскедастичність і зважений метод найменших квадратів
- •1.Елементи класифікації економіко-математичних моделей
- •2.Специфікація моделі
- •3.Розрахунок прогнозованого значення регресанту та побудова для нього із заданим рівнем значущості довірчих інтервалів.
- •1. Принципи математичного моделювання.
- •2. Загальна лінійна економетрична модель.
- •3. Основні поняття і попередній аналіз рядів динаміки: систематичні та випадкові компоненти часового ряду.
- •1.Особливості економічних спостережень і вимірів.
- •2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
- •3.Основні поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду.
- •1. Основні задачі економетрії.
- •2. Розрахунок довірчих інтервалів для оцінок параметрів із заданою надійністю.
2.Проведення кореляційного аналізу за допомогою ms Excel
Кореляція - один з інструментів пакету аналізу Microsoft Excel. Викор для кількісної оцінки взаємозв'язку двох наборів даних, представлених у безрозмірному вигляді. Коефіцієнт кореляції вибірки являє собою ковариацию двох наборів даних, поділену на добуток їхніх станд відхилень.
Кореляційний аналіз дає можливість встановити чи асоційовані набори даних по величині, тобто: великі значення з одного набору даних пов'язані з великими значеннями іншого набору (позитивна кореляція), або, навпаки, малі значення одного набору пов'язані з великими значеннями іншого (негативна кореляція); або дані двох діапазонів ніяк не пов'язані (кореляція близька до нуля).
Для проведення Кореляційного аналізу, необхідно інсталювати та підключити надбудову Excel Пакет анализа. Для проведення кореляційного аналізу необхідно:
активувати інструмент аналізу Кореляція (Сервис – Анализ данных– Корреляция);
Вказати вхідний діапазон
Задати Группировка данных
Вимкнути перемикач Метки в первой строке, що дозволить мати підписи у таблиці результатів.
Задати Вихідний діапазон, це може бути пуста комірка на робочому
листі (у прикладі G19), чи новий лист.
Коефіцієнт кореляції є безрозмірною величиною і приймає значення
від -1 (характеризує лінійний зворотний взаємозв'язок) до +1(характеризує лінійний прямий взаємозв'язок). Для незалежних випадкових величин значення коефіцієнта кореляції знаходиться близько до 0.
3. Методи прогнозування часових рядів: методи соціально-економічного прогнозування
Прогноз – це науково-обгрунтоване судження стосовно можливих станів об’єктів майбутнього, альтернативні шляхи і терміни їх здійснення. Має випадковий характер, але, оскільки він будується на підставі науково-обгрунтованих уявлень про стан і розв’язок об’єкта, здійснення його є в надані ймовірності.
Прогноз оцінюється як очікуваний ймовірний стан об’єкта в майбутньому.
Процес розроблення прогнозів наз прогнозуванням.
Необхідність прогнозувати розвиток тієї чи іншої ситуації, майбутніх змін тих чи інших обставин ставлять дослідників перед проблемою вибору конкретного методу прогнозування.
Методи соціально-економічного прогнозування:
Кількісні методи:
Каузальні: багатомірні регресійні моделі; економетричні моделі; комп’ютерна імітація. Застосовуються в тих випадках, коли шуканий стан залежить не тільки від часу, а й від багатьох змінних.
Аналіз часових рядів: оснований на припущенні у відповідності з яким, те. Що відбулося в минулому, дає гарне наближення в оцінці майбутнього, і є способом виявлення тенденцій минулого та їх продовження в майбутнє.
Якісні методи
Білет №36
Основні дефініції економіко-математичного моделювання.
Економетрія – це порівняно новий напрям економічної науки, що утворюється від поєднання теоретичної економіки, математики, статистики. Слово економетрія озн «вимірювання в економіці». Економетрія - наукова самостійна дисципліна, яка об'єднує сукупність теоретичних результатів, прийомів, методів і моделей, призначена для того, щоб на базі економічної теорії, економічної статистики, математико-статистичного інструментарію надавати конкретне кількісне вираження загальним закономірностям, що обумовлені економічною теорією взаємозв'язків економічних явищ і процесів. Об’єктом економетрії є економічні системи та простори, сукупність різних соціально-економічних процесів, що протікають в економічній системі.
Предмет економетрії – це економетричні методи і моделі, що дозволяють визначити і дослідити кількісні взаємозв’язки між соціально-економічними процесами і явищами. Метою економетричного дослідження є аналіз реальних економічних систем і процесів, що в них відбуваються, за допомогою економетричних методів і моделей, їх застосування при прийнятті науково обґрунтованих управлінських рішень.
Економетрія поділяється на дві частини:
1) економетричні методи;( методи оцінювання параметрів класич екон моделі за МНК, коли порушуються деякі передумови використання МНК, параметрів динамічних економетричних моделей, оцінювання параметрів економетричних моделей, які побудовані на основі с-ми одночасових структ рівнянь
2) економетричні моделі
Основне завдання-оцінити параметри моделі з урахуванням вхідної економ інформації,відповідність моделей і спрогнозувати розвиток економ процесів.