
- •1.Парна лінійна регресія 26
- •Аналіз якості моделі: перевірка статистичної значущості оцінок параметрів економетричної моделі.
- •Визначення коефіцієнта еластичності
- •3.Методи прогнозування часових рядів: методи соціально - економічного прогнозування.
- •1. Основні задачі економетрії.
- •2. Емпірична модель множинної лінійної регресії.
- •3. Гетероскедастичність і зважений метод найменших квадратів.
- •1. Особливості економічних спостережень і вимірів.
- •2.Парна лінійна регресія.
- •3. Розрахунок довірчих інтервалів для оцінок параметрів із заданою надійністю.
- •Визначення параметрів вибраного рівняння.
- •Визначення коефіцієнта еластичності
- •Розрахунок прогнозного значення регресанду та побудова для нього із заданим рівнем значущості довірчих інтервалів.
- •1.Особливості математичного моделювання
- •2.Проведення кореляційного аналізу за допомогою ms Excel
- •3. Методи прогнозування часових рядів: методи соціально-економічного прогнозування
- •Основні дефініції економіко-математичного моделювання.
- •Узагальнений метод найменших квадратів.
- •Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами.
- •1.Парна лінійна регресія
- •2.Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера
- •3.Перевірка гіпотези про існування тренда
- •1.Сутність моделювання як методу наукового пізнання.???
- •3.Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за механічними методами.
- •Особливості математичного моделювання.
- •2.Проведення кореляційного аналізу за допомогою Microsoft Excel.
- •3.Методи прогнозування часових рядів: методи соціально-економічного прогнозування.
- •1. Етапи економіко-математичного моделювання
- •2. Прогнозування значень залежної змінної
- •3. Гетероскедастичність і зважений метод найменших квадратів
- •Елементи класифікації економіко-математичних моделей
- •2. Специфікація моделі
- •3. Розрахунок прогнозного значення регресанду та побудова для нього із заданим рівнем значущості довірчих інтервалів
- •Принципи математичного моделювання.
- •2.Загальна лінійна економетрична модель.
- •1.Основні дефініції економіко-математичного моделювання
- •2. Узагальнений метод найменших квадратів
- •3. Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами
- •1.Особливості економічних спостережень і вимірів.
- •2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
- •3.Основні поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду.
- •Основні задачі економетрії
- •Розрахунок довірчих інтервалів для оцінок параметрів із заданою надійністю
- •Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за середніми характеристиками.
- •1.Парна лінійна регресія
- •2.Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера.
- •3.Перевірка гіпотези про існування тренда
- •Метод найменших квадратів
- •Визначення дисперсій оцінок параметрів та їх стандартних помилок.
- •1.Випадкові збудники в рівнянні лінійної регресії.
- •2.Побудова моделі множинної регресії.
- •1.Етапи побудови економетричної моделі.
- •2. Визначення часткових коефіцієнтів еластичності.
- •3. Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами.
- •2. Емпірична модель множинної лінійної регресії.
- •Визначення параметрів вибраного рівняння
- •Суть гетероскедастичності
- •3.Основні аспекти поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду
- •1. Аналіз якості моделі: перевірка загальної якості рівняння регресії.
- •2. Моделі з порушенням передумов використання звичайного методу найменших квадратів.
- •3. .Перевірка гіпотези про існування тренда.
- •Аналіз якості моделі: довірчі інтервали для оцінок параметрів економетричної моделі.
- •2.Побудова моделі множинної регресії
- •3.Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за середніми характеристиками.
- •Специфікаціямоделі.
- •Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами.
- •1. Сутність моделювання як методу наукового пізнання.
- •2.Гомоскедастичні та гетероскедастичні моделі.
- •1.Елементи класифікації економіко-математичних моделей.
- •3.Узагальнений метод найменших квадратів.
- •Особливості математичного моделювання.
- •Аналіз якості моделі: перевірка загальної якості рівняння регресії.
- •Визначення дисперсії оцінок параметрів та їх стандартних помилок.
- •1. Принципи математичного моделювання.
- •2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
- •1.Основні дефініції економіко-математичного моделювання.
- •2. Аналіз якості моделі: перевірка статистичної значущості оцінок параметрів економетричної моделі.
- •3. Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера.
- •1. Етапи економіко-математичного моделювання
- •2. Прогнозування значень залежної змінної.
- •3. Моделі з порушенням передумов використання звичайного методу найменших квадратів.
- •2.Умови Гауса-Маркова.
- •3.Загальна лінійна економетрична модель.
- •Основні задачі економетрії
- •Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера.
- •Основні поняття та попередній аналіз рядів динаміки: поняття часового ряду
- •1. Сутність моделювання як методу наукового пізнання.
- •2. Умови Гауса-Маркова.
- •3.Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за механічними методами.
- •1. Етапи економіко-математичного моделювання
- •2. Прогнозування значень залежної змінної
- •3. Гетероскедастичність і зважений метод найменших квадратів
- •1.Елементи класифікації економіко-математичних моделей
- •2.Специфікація моделі
- •3.Розрахунок прогнозованого значення регресанту та побудова для нього із заданим рівнем значущості довірчих інтервалів.
- •1. Принципи математичного моделювання.
- •2. Загальна лінійна економетрична модель.
- •3. Основні поняття і попередній аналіз рядів динаміки: систематичні та випадкові компоненти часового ряду.
- •1.Особливості економічних спостережень і вимірів.
- •2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
- •3.Основні поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду.
- •1. Основні задачі економетрії.
- •2. Розрахунок довірчих інтервалів для оцінок параметрів із заданою надійністю.
2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
Для того, щоб здійснити аксонометричний аналіз лінійної функції парної регресії засобами МS Excel, необхідно спочатку увійти в меню Сервіс, потім необхідно вибрати пункт аналіз данних,і у вікну «Аналіз данних» вибрати Регресія. Після цього зявиться вікно, де необхідно ввести початкові вхідні данні та оставити певні додаткові мітки за потребою. Неохідно задати також рівень надійності, який, як правило, становить 95% Після натиснення на кнопку ОК, на новому робочому листі зявиться вивід підсумків, на якому відображаються всі парметри аналізу регресіїї, а саме: коефіцієнт кореляції, коеф. Детермінації, нормований R-квадрат,стандартна похибка, у розділі дисперсіональний аналіз приводяться данні про критерій F. А також за допомогою Аналізу даних можна легко і без зайвих зусиль порахувати T- статистку,P-значення, граничну похибку пробнозу та довірчі інтерали.
3.Основні поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду.
Для аналізу соціально-економічних показників абсолютні рівні моментальних або інтервальних часових рядів, а також рівні середніх величин часто доводиться перетворювати на відносні величини.
Для визначення змін, що відбуваються з досліджуваним явищем, передусім обчислюють швидкість розвитку цього явища за часом. Показником швидкості слугує абсолютний приріст, який характеризує величину зміни показника за інтервал часу між порівнюваними періодами й обчислюється за формулою: ,де — і-й рівень часового ряду ( ); — індекс початкового рівня.
Точніше, швидкість зміни показника характеризує приріст за одиницю часу; ця величина має назву середнього абсолютного приросту: .
Коефіцієнт зростання для і-го періоду обчислюють за формулою: , , якщо рівень підвищується; , якщо рівень зменшується; за рівень не змінюється. Коефіцієнт приросту дорівнює:
На практиці часто застосовують показники темпу зростанняй темпу приросту: , показує, на скільки відсотків рівень одного періоду збільшився стосовно рівня іншого періоду, тобто цей показник характеризує відносну величину приросту у відсотках.
Абсолютне значення одного відсотка приростувизначають як відношення абсолютного приросту до темпу приросту у відсотках .
Середню швидкість зміни показника, що вивчається, за певний період характеризує також середній темп зростання. Його розраховують за формулою середньої геометричної:
,
Відповідно середній темп приросту визначають як:
.
Якщо тенденція часового ряду не змінюється, використовують характеристику середнього рівня ряду. В інтервальному ряду динаміки з однаково розташованими в часі рівнями середній рівень ряду обчислюють за формулою простої середньої арифметичної (тут і далі додавання ведеться за всіма періодами спостережень): .
Якщо інтервальний ряд має неоднаково розташовані в часі рівні, тоді середній рівень ряду (так звану середню хронологічну) обчислюють за формулою зваженої арифметичної середньої, де вагою є тривалість часу (наприклад, кількість років), упродовж якого рівень постійний: ,
де t — кількість періодів часу, для яких значення рівня не змінюється.
Білет № 38