
- •1.Парна лінійна регресія 26
- •Аналіз якості моделі: перевірка статистичної значущості оцінок параметрів економетричної моделі.
- •Визначення коефіцієнта еластичності
- •3.Методи прогнозування часових рядів: методи соціально - економічного прогнозування.
- •1. Основні задачі економетрії.
- •2. Емпірична модель множинної лінійної регресії.
- •3. Гетероскедастичність і зважений метод найменших квадратів.
- •1. Особливості економічних спостережень і вимірів.
- •2.Парна лінійна регресія.
- •3. Розрахунок довірчих інтервалів для оцінок параметрів із заданою надійністю.
- •Визначення параметрів вибраного рівняння.
- •Визначення коефіцієнта еластичності
- •Розрахунок прогнозного значення регресанду та побудова для нього із заданим рівнем значущості довірчих інтервалів.
- •1.Особливості математичного моделювання
- •2.Проведення кореляційного аналізу за допомогою ms Excel
- •3. Методи прогнозування часових рядів: методи соціально-економічного прогнозування
- •Основні дефініції економіко-математичного моделювання.
- •Узагальнений метод найменших квадратів.
- •Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами.
- •1.Парна лінійна регресія
- •2.Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера
- •3.Перевірка гіпотези про існування тренда
- •1.Сутність моделювання як методу наукового пізнання.???
- •3.Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за механічними методами.
- •Особливості математичного моделювання.
- •2.Проведення кореляційного аналізу за допомогою Microsoft Excel.
- •3.Методи прогнозування часових рядів: методи соціально-економічного прогнозування.
- •1. Етапи економіко-математичного моделювання
- •2. Прогнозування значень залежної змінної
- •3. Гетероскедастичність і зважений метод найменших квадратів
- •Елементи класифікації економіко-математичних моделей
- •2. Специфікація моделі
- •3. Розрахунок прогнозного значення регресанду та побудова для нього із заданим рівнем значущості довірчих інтервалів
- •Принципи математичного моделювання.
- •2.Загальна лінійна економетрична модель.
- •1.Основні дефініції економіко-математичного моделювання
- •2. Узагальнений метод найменших квадратів
- •3. Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами
- •1.Особливості економічних спостережень і вимірів.
- •2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
- •3.Основні поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду.
- •Основні задачі економетрії
- •Розрахунок довірчих інтервалів для оцінок параметрів із заданою надійністю
- •Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за середніми характеристиками.
- •1.Парна лінійна регресія
- •2.Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера.
- •3.Перевірка гіпотези про існування тренда
- •Метод найменших квадратів
- •Визначення дисперсій оцінок параметрів та їх стандартних помилок.
- •1.Випадкові збудники в рівнянні лінійної регресії.
- •2.Побудова моделі множинної регресії.
- •1.Етапи побудови економетричної моделі.
- •2. Визначення часткових коефіцієнтів еластичності.
- •3. Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами.
- •2. Емпірична модель множинної лінійної регресії.
- •Визначення параметрів вибраного рівняння
- •Суть гетероскедастичності
- •3.Основні аспекти поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду
- •1. Аналіз якості моделі: перевірка загальної якості рівняння регресії.
- •2. Моделі з порушенням передумов використання звичайного методу найменших квадратів.
- •3. .Перевірка гіпотези про існування тренда.
- •Аналіз якості моделі: довірчі інтервали для оцінок параметрів економетричної моделі.
- •2.Побудова моделі множинної регресії
- •3.Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за середніми характеристиками.
- •Специфікаціямоделі.
- •Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами.
- •1. Сутність моделювання як методу наукового пізнання.
- •2.Гомоскедастичні та гетероскедастичні моделі.
- •1.Елементи класифікації економіко-математичних моделей.
- •3.Узагальнений метод найменших квадратів.
- •Особливості математичного моделювання.
- •Аналіз якості моделі: перевірка загальної якості рівняння регресії.
- •Визначення дисперсії оцінок параметрів та їх стандартних помилок.
- •1. Принципи математичного моделювання.
- •2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
- •1.Основні дефініції економіко-математичного моделювання.
- •2. Аналіз якості моделі: перевірка статистичної значущості оцінок параметрів економетричної моделі.
- •3. Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера.
- •1. Етапи економіко-математичного моделювання
- •2. Прогнозування значень залежної змінної.
- •3. Моделі з порушенням передумов використання звичайного методу найменших квадратів.
- •2.Умови Гауса-Маркова.
- •3.Загальна лінійна економетрична модель.
- •Основні задачі економетрії
- •Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера.
- •Основні поняття та попередній аналіз рядів динаміки: поняття часового ряду
- •1. Сутність моделювання як методу наукового пізнання.
- •2. Умови Гауса-Маркова.
- •3.Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за механічними методами.
- •1. Етапи економіко-математичного моделювання
- •2. Прогнозування значень залежної змінної
- •3. Гетероскедастичність і зважений метод найменших квадратів
- •1.Елементи класифікації економіко-математичних моделей
- •2.Специфікація моделі
- •3.Розрахунок прогнозованого значення регресанту та побудова для нього із заданим рівнем значущості довірчих інтервалів.
- •1. Принципи математичного моделювання.
- •2. Загальна лінійна економетрична модель.
- •3. Основні поняття і попередній аналіз рядів динаміки: систематичні та випадкові компоненти часового ряду.
- •1.Особливості економічних спостережень і вимірів.
- •2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
- •3.Основні поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду.
- •1. Основні задачі економетрії.
- •2. Розрахунок довірчих інтервалів для оцінок параметрів із заданою надійністю.
Визначення параметрів вибраного рівняння
Економічний зміст параметрів рівняння лінійної парної регресії:
параметр характеризує середню зміну результату із зміною фактору на одиницю. Параметр при . Якщо не може бути рівним нулю, то параметр не має економічного змісту. Інтерпретувати можна лише знак при : якщо , то відносна зміна результату відбувається повільніше, ніж зміна фактора і навпаки, якщо , то відносна зміна результату відбувається швидше, ніж зміна фактора. Численні значення параметрів лінійного програмування регресійного рівняння можуть бути отримані й за допомогою графічного подання рівняння регресії. Параметр а0 визначає точку перетину прямої Уt з віссю ординат, а другий параметр рівняння а1- це тангенс кута нахилу прямої до осі абсцис, що визначає наскільки сильно буде нахилена ця пряма до осі абсцис.
Суть гетероскедастичності
Р
озглянемо
модель, що належить до 1-ої групи моделей
з порушенням передумов ЗМНК.
При здійснені вибірки ми маємо справу з конкретними реаліз залежної змінної У і відповідними значеннями змінних регресорів, при цьому завжди буде присутній фактор випадкових збурень, що породжують випадкові відхилення (ВВ).ВВ апріорно можуть набувати довільних значень, що підпорядковуються певним ймовірним розподілом. Однієї з головних вимог до цих розподілів є рівність їх дисперсії. Цю вимогу необхідно розуміти наступним чином: Незважаючи на те, що при кожному конкретному спостереженні, ВВ будуть між собою відрізнятися. Не повинно існувати причини, яка б спонукала значну розбіжність між цими величинами, тобто похибки в середньому для всіх спостережень повинні мало відрізнятися.Розглянемо залежність: Розглянемо для даної моделі 2 випадки:
Умова гомоскедастичності виконується.
Умова гомоскедастичності не виконується, тобто наявна гетероскедастичність. В цьому випадку можуть виникати проблеми з ефектом масштабу різниць одиниць виміру. У часових рядах явище гетероскедастичності повТязано з тим, що одні і тіж самі показники розглядаються в різні моменти часу. За наявності гетероскедастичності 1-ої групи статистична оцінка дисперсії обчислюється наступним чином:
Тоді Т-,Ф-статистики та інтервали оцінки
параметрів моделі стануть не надійними, отже використовується ЗМНК при наявності гетероскедастичності в моделі. Маємо суму квадратних похибок:
Кожне
конкретне значення
в
наведеній сумі має однакову питому вагу
незалежно від того, чи одерж його при
значенні Х=хі, де є мала дисперсія, чи
призначені Х=хj, де наявна велика
дисперсія, що вважається не припустимо.
3.Основні аспекти поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду
Для аналізу соціально-економічних показників абсолютні рівні моментальних або інтервальних часових рядів, а також рівні середніх величин часто доводиться перетворювати на відносні величини.
Для визначення змін, що відбуваються з досліджуваним явищем, передусім обчислюють швидкість розвитку цього явища за часом. Показником швидкості слугує абсолютний приріст, який характеризує величину зміни показника за інтервал часу між порівнюваними періодами й обчислюється за формулою: ,де — і-й рівень часового ряду ( ); — індекс початкового рівня.
Точніше, швидкість зміни показника характеризує приріст за одиницю часу; ця величина має назву середнього абсолютного приросту: .
Коефіцієнт зростання для і-го періоду обчислюють за формулою: , , якщо рівень підвищується; , якщо рівень зменшується; за рівень не змінюється. Коефіцієнт приросту дорівнює:
На практиці часто застосовують показники темпу зростання й темпу приросту: , показує, на скільки відсотків рівень одного періоду збільшився стосовно рівня іншого періоду, тобто цей показник характеризує відносну величину приросту у відсотках.
Абсолютне значення одного відсотка приросту визначають як відношення абсолютного приросту до темпу приросту у відсотках .
Середню швидкість зміни показника, що вивчається, за певний період характеризує також середній темп зростання. Його розраховують за формулою середньої геометричної:
,
Відповідно середній темп приросту визначають як:
.
Якщо тенденція часового ряду не змінюється, використовують характеристику середнього рівня ряду. В інтервальному ряду динаміки з однаково розташованими в часі рівнями середній рівень ряду обчислюють за формулою простої середньої арифметичної (тут і далі додавання ведеться за всіма періодами спостережень): .
Якщо інтервальний ряд має неоднаково розташовані в часі рівні, тоді середній рівень ряду (так звану середню хронологічну) обчислюють за формулою зваженої арифметичної середньої, де вагою є тривалість часу (наприклад, кількість років), упродовж якого рівень постійний: ,
де t — кількість періодів часу, для яких значення рівня не змінюється.
Білет № 15