Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК Механика_РИО верстка_1.doc
Скачиваний:
153
Добавлен:
08.05.2019
Размер:
26.5 Mб
Скачать

Тема 20. Принцип возможных перемещений

Составление уравнений движения сложных механических систем (состоящих из нескольких тел, соединенных шарнирами, нитями, стержнями и т.д.) с помощью общих теорем динамики может стать весьма трудоемкой задачей, поскольку, как правило, требует расчленения системы на отдельные подсистемы с введением заранее неизвестных сил реакции. Если же нас интересует лишь само движение системы (т.е. нахождение ее координат как функций времени), то такой подход приводит к необходимости проведения большой работы по исключению реакций. Это и побудило многих механиков разработать новые методы, лишенные указанных недостатков и составляющие содержание аналитической динамики. Начало развитию этих методов было в основном положено французским математиком и механиком Ж.-Л. Лагранжем в его сочинении «Аналитическая механика» (1788 г.)

Связи и число степеней свободы механической системы. Обобщенные координаты. Основным предметом исследования аналитической механики являются несвободные механические системы, у которых образующие их тела и материальные точки не могут занимать произвольных положений в пространстве, что выражается в виде равенств или неравенств, которым должны подчиняться координаты и скорости характерных точек системы. Такие равенства (или неравенства) называются связями. Им дается следующая классификация:

1. Связи, выражающиеся в виде равенств, называются удерживающими, а в виде неравенств – неудерживающими.

2. Связи, не содержащие явно времени t, называются стационарными. В противном случае – нестационарными.

3. Связи, содержащие только координаты точек системы и не содержащие производных от них, называются геометрическими; если же кроме координат связи содержат и их производные, связи называются кинематическими.

Среди кинематических связей есть такие, которые путем их интегрирования могут быть превращены в геометрические. Такие связи, как и исходные геометрические, называются голономными. Неинтегрируемые кинематические связи называются неголономными.

Если на систему, состоящую из N материальных точек с прямоугольными координатами xi, yi, zi (i = 1, …, N), наложено k удерживающих голономных связей, то только n = 3Nk координатам можно придавать произвольные значения, в то время как остальные k определятся из уравнений связей. Число n в этом случае называется числом степеней свободы голономной системы.

Выбранные независимые k координаты называются независимыми обобщенными координатами. В качестве их необязательно выбирать прямоугольные координаты. Ими могут быть любые геометрические параметры, однозначно определяющие положения всех точек системы относительно выбранной системы отсчета, т.е. радиус-вектор любой точки системы можно считать однозначной и непрерывной функцией взятых обобщенных координат. Однако такое определение степеней свободы не годится для неголономной системы, но оно может быть дано с помощью важнейшего понятия аналитической механики – понятия виртуальных перемещений.

В качестве достаточно простого примера системы с линейными неголономными связями рассмотрим движение шара по абсолютно шероховатой плоскости. Это означает, что скорость точки Р контакта шара с плоскостью в каждый момент времени обращается в нуль, что и приводит к возникновению неголономной связи. Введем неподвижную прямоугольную систему координат Oxyz, оси Ox и Oy которой расположим в рассматриваемой плоскости, а ось Oz – перпендикулярно к ней в сторону шара. Положение шара зададим тремя координатами (xc, yc, zc) центра шара C и тремя углами Эйлера (φ, θ, ψ). Взяв центр шара за полюс, для скорости точки Р будем иметь

.

Обозначая радиус шара через R и приравнивая к нулю каждую из проекций вектора , получим три уравнения связи:

из которых последнее дает голономную связь zc = R, а первые два – неголономную. Действительно, подставляя в них выражения проекций угловой скорости шара на неподвижные оси через углы Эйлера, даваемые кинематическими уравнениями Эйлера, будем иметь

,

.

Полученные уравнения не могут быть проинтегрированы, и представляют, следовательно, неголономную линейную связь. Таким образом, вариации шести выбранных координат, задающих положение шара, оказываются связанными тремя линейными уравнениями, и, следовательно, рассматриваемый шар имеет три степени свободы.

Рассмотрим еще один весьма важный тип связей, называемых идеальными и характеризующихся тем, что сумма работ их реакций на любом возможном перемещении равна нулю. Приведем наиболее типичные примеры таких связей:

1. Тяжелая материальная точка, подвешенная на нити. Поскольку реакция нити направлена по нити, а любое виртуальное перемещение точки перпендикулярно нити, то имеем = 0. Связь идеальная.

2. Тело, катящееся по абсолютно шероховатой поверхности. Поскольку скорость точки касания тела Р в каждый момент времени равна нулю, то виртуальное перемещение этой точки также равно нулю. А тогда при любом направлении реакции плоскости в этой точке опять получаем = 0, т.е. и в этом случае имеем идеальную связь.

3. Пусть А и В две точки абсолютно твердого тела. По третьему закону Ньютона они действуют друг на друга с равными и противоположно направленными вдоль прямой АВ силами: и . Согласно теореме кинематики о скоростях двух точек твердого тела, проекции их виртуальных перемещений на прямую АВ должны быть равны. Отсюда вытекает, что сумма работ этих сил на указанных виртуальных перемещениях обращается в нуль.

Таким образом, идеальные связи охватывают достаточно широкий класс механических систем.

Возможные (виртуальные) перемещения системы

Возможные (виртуальные) перемещения системы (s, ) – любая совокупность бесконечно малых перемещений точек системы, допускаемых в данный момент наложенными на систему связями. Возможные перемещения рассматривают как величины первого порядка малости, пренебрегая при этом величинами высших порядков малости. То есть криволинейные перемещения точек заменяют прямолинейными отрезками, отложенными по касательным к их траекториям.

Число независимых между собою возможных перемещений системы называется числом степеней свободы этой системы. Например, шар на плоскости может перемещаться в любом направлении, но любое его возможное перемещение может быть получено как геометрическая сумма двух перемещений вдоль двух взаимно перпендикулярных осей. Свободное твердое тело имеет шесть степеней свободы.

Возможная (виртуальная) работа (А) – элементарная работа, которую, действующая на материальную точку сила могла бы совершить при возможном перемещении этой точки.

Связи являются идеальными, если сумма элементарных работ реакций этих связей при любом возможном перемещении системы равна нулю, т.е. Аr = 0.

Принцип возможных перемещений: для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении была равна нулю:

или .

Принцип возможных перемещений дает в общей форме условия равновесия для любой механической системы, дает общий метод решения задач статики.

Если система имеет несколько степеней свободы, то уравнение принципа возможных перемещений составляют для каждого из независимого перемещений в отдельности, т.е. будет столько уравнений, сколько система имеет степеней свободы.

Общее уравнение динамики. При движении системы с идеальными связями в каждый данный момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю:

.

Уравнение использует принцип возможных перемещений и принцип Даламбера и позволяет составить дифференциальные уравнения движения любой механической системы, дает общий метод решения задач динамики. Последовательность составления:

1. Приложение к каждому телу действующих на него задаваемых сил, а также условное приложение сил и моментов пар сил инерции.

2. Сообщение системе возможных перемещений.

3. Составление уравнения принципа возможных перемещений, считая систему находящейся в равновесии.

Уравнения Лагранжа 2-го рода:

, (i = 1, 2, …, s) – дифференциальные уравнения второго порядка,

где s – число степеней свободы системы (число независимых координат);

qi – обобщенная координата (перемещение, угол, площадь и др.);

– обобщенная скорость (линейная, угловая, секторная и др.),

Т = Т (q1, q2,…,qS, , , … , t) – кинетическая энергия системы;

Qi – обобщенная сила (сила, момент и др.), ее размерность зависит от размерности обобщенной координаты и размерности работы.

Для вычисления обобщенной силы, например Q1, необходимо задать возможное перемещение, при котором все вариации обобщенных координат, кроме q1, равны нулю:

q1  0, q2 = q3 = qS = 0.

Вычисляем на этом перемещении возможную работу А1 всех активных сил, приложенных к системе. Имея А1 = Q1q1, находим .

Если силы, действующие на систему, потенциальные (консервативные) (например, силы тяжести, силы упругости), то

,

где П = П (q1, q2, …, qS, t) – потенциальная энергия.

Функция Лагранжа: L = TП, тогда – уравнения Лагранжа второго рода для консервативной системы.

При стационарных связях (связях, не зависящих от времени) t не входит в выражение для кинетической энергии, тогда – квадратичная форма обобщенных скоростей, aij= aji – коэффициенты инерции. Квадратичная форма всегда положительна.