Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FREGRAVOL1.pdf
Скачиваний:
81
Добавлен:
05.06.2015
Размер:
5.17 Mб
Скачать

288

7 Gravitational Waves and the Binary Pulsars

7.3.2 Energy and Momentum of a Plane Gravitational Wave

Let us consider the perturbed metric (7.3.2) and let us introduce a null coordinate system adapted to Minkowski space:

x

= u = x0 x1; xi = x2, x3

(7.3.13)

x

+ = v = x0 + x1

(7.3.14)

Correspondingly the Minkowskian metric takes the form:

ds2 = 2 dx+ dxdxi dxi = ημν dxμ dxν

(7.3.15)

where:

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

0

 

 

ημν

=

 

1

0

0

0

 

(7.3.16)

0

0

1

0

 

 

0

0

 

 

1

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

A plane wave corresponds to the case where the metric deformation is a function only of one the light-cone coordinates u, v: for outgoing waves only of u, for incoming waves only of v. Since we are interested in outgoing waves we choose:

 

 

 

 

 

 

 

 

hμν (x) = hμν (u)

 

 

(7.3.17)

Relying on the relations:

 

 

 

 

 

 

 

 

 

 

 

 

+ =

 

;

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂v

∂u

 

 

 

 

+ =

η+−

 

= ;

= η−+

= +

(7.3.18)

 

 

 

∂x

∂x+

i =

ηij

 

= −i

 

 

 

 

 

 

 

 

 

 

 

 

∂xj

 

 

 

 

from the Hilbert de Donder gauge condition:

 

 

 

 

 

 

 

 

 

 

 

 

μγμν = 0

 

 

(7.3.19)

by using γμν = γμν (u) we obtain:

 

 

 

 

 

 

 

 

 

 

 

 

γ+ν = const = 0

 

 

(7.3.20)

The last of the above equations is fixed by our physically chosen boundary conditions. At infinity, namely at very remote future times and in very distant space locations where the wave has not yet arrived, the metric is just Minkowski. Hence there is no constant part of γμν .

Next we recall the discussion of Chap. 5 about residual gauge transformations. The Lorentz covariant Hilbert de Donder gauge is not complete, since there exist

7.3 Emission of Gravitational Waves

289

further gauge transformations that preserve it. By using these transformations one can further reduce the form of γμν making it transverse and traceless, namely of the form:

 

 

0

0

0

 

0

 

 

γμν (u)

=

0

0

0

 

0

 

(7.3.21)

0

0

a(u)

b(u)

 

 

 

 

0

0

b(u)

a(u)

 

 

 

 

 

 

 

 

 

 

where the two functions a(u) and b(u) are arbitrary. We shall use this gauge-fixed form of the metric perturbation in the evaluation of the stress-energy 3-form as given in (7.3.10). To this effect we need to calculate the spin connection associated with the metric deformation hμν .

7.3.2.1 Calculation of the Spin Connection

In order to use the spin-connection formalism we need to give the form of the vielbein first. This requires a further gauge fixing, that of local Lorentz transformations. Indeed the vielbein Ea is defined up to local Lorentz rotations. We fix that gauge by stating that the linearized vielbein is solely parameterized by the symmetric metric fluctuation hμν . This is obtained by setting:

Ea = dxa +

1

hab dxcηbc

2

which yields:

 

 

1

 

 

 

 

 

dEa =

 

chab dxc dxd ηbd

2

Then from the vanishing torsion equation, we obtain:

0 = dEa + ωac Ef ηcf

that yields:

 

 

1

 

 

 

ωabηbm ωmabηbl = −

 

 

l habηbm mhabηbl

2

(7.3.22)

(7.3.23)

(7.3.24)

(7.3.25)

We uniquely solve the above relation by means of the linearized spin connection:

1

 

 

 

 

ωab = −

 

ηaf ηbg (∂f hgl g hf l ) dxl

(7.3.26)

2

This result can be made explicit in the light-cone basis as follows:

 

ω+− = −

1

(∂h+l +hl ) dxl

(7.3.27)

 

2

ω+i = −

1

(∂h+l i hl ) dxl

(7.3.28)

 

2

Ecεabcd

290

 

7 Gravitational Waves and the Binary Pulsars

ωi = −

1

(∂+hil i h+l ) dxl

(7.3.29)

 

2

ωij = −

1

(∂i hj l j hil ) dxl

(7.3.30)

 

2

In the plane wave case denoting the derivative ∂/∂u by a dot we find:

 

ω+− = ωi = ωij = 0

 

(7.3.31)

 

 

 

 

= −

2 ˙ij

 

 

 

 

 

 

ω+i

 

 

 

1

h

 

dxj

 

(7.3.32)

or more explicitly:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

2

= −

1

 

˙

2

+ ˙

3

 

 

2

ω

 

 

 

 

1

a dx

 

 

b dx

 

(7.3.33)

 

 

 

 

 

 

 

 

 

 

 

 

ω

+

3

= −

 

˙

2

a˙ dx

3

 

2

 

 

 

 

 

b dx

 

 

 

 

 

Let us now consider the stress-energy tensor 3-form (7.3.10). Since the only nonvanishing component is ω+i , the second addend ωaf ωf b vanishes identically. Hence

td =

1

 

κ ωab ωcf Ef εabcd

(7.3.34)

Now (ab) must necessarily be (+i). Hence c must necessarily be 2 or 3 so that f = +, also necessarily. Therefore d cannot be anything else but . Hence only tis non-vanishing.

The final result is:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= − κ

+

 

 

+

 

 

 

= κ

˙

+

˙

 

 

 

 

 

 

 

 

 

t

 

2

ω

 

2

 

ω

3

 

E

2

(a)2

 

(b)2

dx

2

 

dx

3

 

du

(7.3.35)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This result can be interpreted by recalling the encoding of the symmetric stressenergy in the stress-energy 3-form. This encoding was discussed in Chap. 5 and takes the following form:

td = Tdp ηpq εqrsuEr Es Eu

(7.3.36)

Applying the above relation to the stress energy 3-form of a plane wave as given by (7.3.35), we obtain:

t= 2 · 3t−−η−+ε+23E2 E3 E= 6t−− dx2 dx3 du

(7.3.37)

Hence by comparison we conclude:

t−− = −

01 =

3κ

˙

+

˙

 

 

t

 

1

 

(a)2

 

(b)2

(all other entries vanish)

(7.3.38)

 

 

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]