- •Preface
- •Acknowledgements
- •Contents
- •1.1 Introduction
- •1.2 Classical Physics Between the End of the XIX and the Dawn of the XX Century
- •1.2.1 Maxwell Equations
- •1.2.2 Luminiferous Aether and the Michelson Morley Experiment
- •1.2.3 Maxwell Equations and Lorentz Transformations
- •1.3 The Principle of Special Relativity
- •1.3.1 Minkowski Space
- •1.4 Mathematical Definition of the Lorentz Group
- •1.4.1 The Lorentz Lie Algebra and Its Generators
- •1.4.2 Retrieving Special Lorentz Transformations
- •1.5 Representations of the Lorentz Group
- •1.5.1 The Fundamental Spinor Representation
- •1.6 Lorentz Covariant Field Theories and the Little Group
- •1.8 Criticism of Special Relativity: Opening the Road to General Relativity
- •References
- •2.1 Introduction
- •2.2 Differentiable Manifolds
- •2.2.1 Homeomorphisms and the Definition of Manifolds
- •2.2.2 Functions on Manifolds
- •2.2.3 Germs of Smooth Functions
- •2.3 Tangent and Cotangent Spaces
- •2.4 Fibre Bundles
- •2.5 Tangent and Cotangent Bundles
- •2.5.1 Sections of a Bundle
- •2.5.2 The Lie Algebra of Vector Fields
- •2.5.3 The Cotangent Bundle and Differential Forms
- •2.5.4 Differential k-Forms
- •2.5.4.1 Exterior Forms
- •2.5.4.2 Exterior Differential Forms
- •2.6 Homotopy, Homology and Cohomology
- •2.6.1 Homotopy
- •2.6.2 Homology
- •2.6.3 Homology and Cohomology Groups: General Construction
- •2.6.4 Relation Between Homotopy and Homology
- •References
- •3.1 Introduction
- •3.2 A Historical Outline
- •3.2.1 Gauss Introduces Intrinsic Geometry and Curvilinear Coordinates
- •3.2.3 Parallel Transport and Connections
- •3.2.4 The Metric Connection and Tensor Calculus from Christoffel to Einstein, via Ricci and Levi Civita
- •3.2.5 Mobiles Frames from Frenet and Serret to Cartan
- •3.3 Connections on Principal Bundles: The Mathematical Definition
- •3.3.1 Mathematical Preliminaries on Lie Groups
- •3.3.1.1 Left-/Right-Invariant Vector Fields
- •3.3.1.2 Maurer-Cartan Forms on Lie Group Manifolds
- •3.3.1.3 Maurer Cartan Equations
- •3.3.2 Ehresmann Connections on a Principle Fibre Bundle
- •3.3.2.1 The Connection One-Form
- •Gauge Transformations
- •Horizontal Vector Fields and Covariant Derivatives
- •3.4 Connections on a Vector Bundle
- •3.5 An Illustrative Example of Fibre-Bundle and Connection
- •3.5.1 The Magnetic Monopole and the Hopf Fibration of S3
- •The U(1)-Connection of the Dirac Magnetic Monopole
- •3.6.1 Signatures
- •3.7 The Levi Civita Connection
- •3.7.1 Affine Connections
- •3.7.2 Curvature and Torsion of an Affine Connection
- •Torsion and Torsionless Connections
- •The Levi Civita Metric Connection
- •3.8 Geodesics
- •3.9 Geodesics in Lorentzian and Riemannian Manifolds: Two Simple Examples
- •3.9.1 The Lorentzian Example of dS2
- •3.9.1.1 Null Geodesics
- •3.9.1.2 Time-Like Geodesics
- •3.9.1.3 Space-Like Geodesics
- •References
- •4.1 Introduction
- •4.2 Keplerian Motions in Newtonian Mechanics
- •4.3 The Orbit Equations of a Massive Particle in Schwarzschild Geometry
- •4.3.1 Extrema of the Effective Potential and Circular Orbits
- •Minimum and Maximum
- •Energy of a Particle in a Circular Orbit
- •4.4 The Periastron Advance of Planets or Stars
- •4.4.1 Perturbative Treatment of the Periastron Advance
- •References
- •5.1 Introduction
- •5.2 Locally Inertial Frames and the Vielbein Formalism
- •5.2.1 The Vielbein
- •5.2.2 The Spin-Connection
- •5.2.3 The Poincaré Bundle
- •5.3 The Structure of Classical Electrodynamics and Yang-Mills Theories
- •5.3.1 Hodge Duality
- •5.3.2 Geometrical Rewriting of the Gauge Action
- •5.3.3 Yang-Mills Theory in Vielbein Formalism
- •5.4 Soldering of the Lorentz Bundle to the Tangent Bundle
- •5.4.1 Gravitational Coupling of Spinorial Fields
- •5.5 Einstein Field Equations
- •5.6 The Action of Gravity
- •5.6.1 Torsion Equation
- •5.6.1.1 Torsionful Connections
- •The Torsion of Dirac Fields
- •Dilaton Torsion
- •5.6.2 The Einstein Equation
- •5.6.4 Examples of Stress-Energy-Tensors
- •The Stress-Energy Tensor of the Yang-Mills Field
- •The Stress-Energy Tensor of a Scalar Field
- •5.7 Weak Field Limit of Einstein Equations
- •5.7.1 Gauge Fixing
- •5.7.2 The Spin of the Graviton
- •5.8 The Bottom-Up Approach, or Gravity à la Feynmann
- •5.9 Retrieving the Schwarzschild Metric from Einstein Equations
- •References
- •6.1 Introduction and Historical Outline
- •6.2 The Stress Energy Tensor of a Perfect Fluid
- •6.3 Interior Solutions and the Stellar Equilibrium Equation
- •6.3.1 Integration of the Pressure Equation in the Case of Uniform Density
- •6.3.1.1 Solution in the Newtonian Case
- •6.3.1.2 Integration of the Relativistic Pressure Equation
- •6.3.2 The Central Pressure of a Relativistic Star
- •6.4 The Chandrasekhar Mass-Limit
- •6.4.1.1 Idealized Models of White Dwarfs and Neutron Stars
- •White Dwarfs
- •Neutron Stars
- •6.4.2 The Equilibrium Equation
- •6.4.3 Polytropes and the Chandrasekhar Mass
- •6.5 Conclusive Remarks on Stellar Equilibrium
- •References
- •7.1 Introduction
- •7.1.1 The Idea of GW Detectors
- •7.1.2 The Arecibo Radio Telescope
- •7.1.2.1 Discovery of the Crab Pulsar
- •7.1.2.2 The 1974 Discovery of the Binary System PSR1913+16
- •7.1.3 The Coalescence of Binaries and the Interferometer Detectors
- •7.2 Green Functions
- •7.2.1 The Laplace Operator and Potential Theory
- •7.2.2 The Relativistic Propagators
- •7.2.2.1 The Retarded Potential
- •7.3 Emission of Gravitational Waves
- •7.3.1 The Stress Energy 3-Form of the Gravitational Field
- •7.3.2 Energy and Momentum of a Plane Gravitational Wave
- •7.3.2.1 Calculation of the Spin Connection
- •7.3.3 Multipolar Expansion of the Perturbation
- •7.3.3.1 Multipolar Expansion
- •7.3.4 Energy Loss by Quadrupole Radiation
- •7.3.4.1 Integration on Solid Angles
- •7.4 Quadruple Radiation from the Binary Pulsar System
- •7.4.1 Keplerian Parameters of a Binary Star System
- •7.4.2 Shrinking of the Orbit and Gravitational Waves
- •7.4.2.1 Calculation of the Moment of Inertia Tensor
- •7.4.3 The Fate of the Binary System
- •7.4.4 The Double Pulsar
- •7.5 Conclusive Remarks on Gravitational Waves
- •References
- •Appendix A: Spinors and Gamma Matrix Algebra
- •A.2 The Clifford Algebra
- •A.2.1 Even Dimensions
- •A.2.2 Odd Dimensions
- •A.3 The Charge Conjugation Matrix
- •A.4 Majorana, Weyl and Majorana-Weyl Spinors
- •Appendix B: Mathematica Packages
- •B.1 Periastropack
- •Programme
- •Main Programme Periastro
- •Subroutine Perihelkep
- •Subroutine Perihelgr
- •Examples
- •B.2 Metrigravpack
- •Metric Gravity
- •Routines: Metrigrav
- •Mainmetric
- •Metricresume
- •Routine Metrigrav
- •Calculation of the Ricci Tensor of the Reissner Nordstrom Metric Using Metrigrav
- •Index
5.6 The Action of Gravity |
211 |
Let us next consider the implication of the differential Bianchi identity (5.5.4). Taking into account the vanishing torsion condition and expanding along the vielbein basis we get:
0 = Df Rabcd Ef Ec Ed |
|
(5.5.14) |
||||
Explicitly this means: |
|
|
|
|
|
|
0 = Df R |
ab |
+ DcR |
ab |
+ Dd R |
ab |
(5.5.15) |
cd |
df |
f c |
If in the above equation we take the double contraction f ↔ a and b ↔ d we obtain the following immediate result:
D a Gab = 0 |
1 |
|
(5.5.16) |
|
Gab ≡ Ricab − |
ηabR |
(5.5.17) |
||
|
||||
2 |
So from the study of Bianchi identities, in presence of the soldering equation, we have come to the conclusion that there exists a unique linear combination of the Riemann tensor components which is symmetric and fulfills the unique property of being divergenceless D a Gab = 0. Such a property guarantees that it can function as the left hand side of an equation, whose right hand side is a conserved symmetric tensor. The object Gab is named the Einstein tensor for very good reasons. The intuitive idea, summarized by Eddington’s metaphor (see Fig. 5.1), that the space-time curvature is proportional to its energy-matter content, could find a precise mathematical formulation when Einstein discovered the tensor Gab . Indeed it was clear to him from the beginning that the conserved current sitting on the right hand side of the gravitational equation had to be the symmetric stress-energy tensor, namely the conserved current of the relativistic momentum P μ, which substitutes the Newtonian gravitational mass. The left hand side had similarly to be a symmetric conserved tensor, encoding the curvature of space-time, which should be quadratic in the derivatives of the metric gμν . The answer was clearly provided by Gab which allowed Einstein to write an equation of the form [2, 3]:
Gab = |
4π G |
|
c2 Tab |
(5.5.18) |
where G is Newton’s constant and Tab is the stress-energy tensor describing all matter components filling space-time. It is very much rewarding that (5.5.18) and the soldering condition can be simultaneously obtained as variational equations from a single action principle whose structure can be uniquely determined under few reasonable and compelling assumptions.
5.6 The Action of Gravity
The Yang-Mills action, as we described it in the previous sections is quadratic in the curvature field strength so that it leads to second order differential equations
212 |
5 Einstein Versus Yang-Mills Field Equations |
for the gauge field Aμ. Yet in order to be written it requires either the use of the Hodge-duals or of the first order formulation based on the vielbein formalism we explained in Sect. 5.3.2. In any case knowledge of the gravitational field is intrinsically involved. In the case of gravity a quadratic action in the Riemann tensor is excluded since this would lead to differential equations of order four for the gravitational field which is the metric gμν or its substitute, the vielbein Eμa . This would violate the basic principles of classical mechanics where positions and velocities of the field should define a complete set of initial data. Hence the gravitational action has to be at most linear in the Riemann curvature tensor. Here is the first striking difference with Yang-Mills theory. Such a difference streams from the fact that the basic dynamical degrees of freedom of the gravitational field are not encoded in the connection itself (the Levi Civita connection) rather in the metric from which it derives. On the other hand the whole discussion of the present chapter taught us that the vielbein is in its own sake a connection, simply of a larger algebra, namely the Poincaré Lie algebra. Yet gravity cannot be simply regarded as the Yang-Mills theory of the Poincaré connection since it should include, as a built in principle the soldering (5.4.1) which allows to eliminate the spin connection ωab in terms of the vielbein.
So we come up with the following apparently very difficult task: we should construct an action functional
Agrav |
= |
Lgrav(E, ω) |
(5.6.1) |
|
for the vielbein Ea and the spin connection ωab possessing the following obligatory properties:
(a)Lgrav(E, ω) should be an m-form (for m-dimensional gravity) constructed only with wedge products of Ea , ωab and their exterior differentials dEa , dωab , without the use of any Hodge duals, which would imply the necessary use of a metric tensor. Fulfilling these specified properties, the action Agrav will be automatically invariant against arbitrary diffeomorphisms of the base manifold M .
(b)Lgrav(E, ω) should be at most linear in the curvature two-form Rab .
(c)Lgrav(E, ω) should be invariant against arbitrary local Lorentz transformations defined as follows:
a |
= Λ |
a |
|
b |
for the vielbein |
|
|
|
|
|||||
E2 |
b |
(x)E |
|
|
|
|
(5.6.2) |
|||||||
ab |
= Λ |
a |
(x) dΛ |
b |
(x)η |
cd |
+ Λ |
a |
(x)Λ |
b |
ω |
cd |
for the spin connection |
|
2ω |
c |
d |
|
c |
c |
|
(d)The variation of the action with respect to the spin connection one-form ωab
should just implement the soldering condition, namely should have as unique solution the vanishing of the torsion two-form Ta = 0.
(e)The variation of the action with respect to the vielbein Ea should result in the unique algebraic condition that the Einstein tensor vanishes: Gab = 0.
Such a hard task has indeed a simple and unique solution. Before presenting it let us illustrate the reasons behind all the listed requirements.
5.6 The Action of Gravity |
213 |
Diffeomorphic invariance encodes the principle of equivalence. Indeed this is the very starting point of the new theory of gravity, searched by Einstein such that the laws of physics should take the same form for any observer, independently from his state of motion. Linearity in the curvature two-form we have already discussed. It is necessary in order to obtain second order field equations for the gravitational field. Invariance against local Lorentz transformations is equally essential. Indeed the physical degrees of freedom of the gravitational field have already been shown to be associated with the metric, which is a symmetric m × m matrix. Replacing gμν by the vielbein Eμa which is an m × m matrix, with no prescribed symmetricity property, implies that we are enlarging the number of dynamical variables by means of an extra amount 12 m(m − 1), that are fictitious. The only way this procedure might be correct is whether an extra local symmetry is introduced with exactly as many parameters as we have surreptitiously slept in. This extra symmetry is precisely local Lorentz symmetry , the parameter space of SO(1, m − 1) having just dimension 12 m(m − 1). Local Lorentz symmetry can be used to gauge away the antisymmetric part of Eμa , leaving the physical degrees of the metric. Finally that the soldering condition should follow as a dynamical variational equation and should not be imposed as an external constraint is a consistency requirement for the dynamical action one wants to construct. Under such a condition, the coupling to gravity of fermionic fields, that involve the spin connection, will automatically introduce all the needed modifications without any ad hoc constructions.
Having clarified the implications of all the constructive requirements, let us present their solution. Apart from a multiplicative constant, the gravitational action is the following one:
|
= |
κ |
|
|
Agrav |
|
1 |
|
Lgrav(E, ω) |
|
|
(5.6.3)
Lgrav(E, ω) = Ra1a2 [ω] Ea3 · · · Eam εa1...am
where εa1...am denotes the completely antisymmetric Levi Civita symbol. Purposely the curvature two-form has been written as Ra1a2 [ω] in order to emphasize that it should be considered as a functional of the spin connection regarded as an independent variable.
Let us comment on the physical dimensions of the parameter κ. First of all, let us note that in m = 4 space-time dimensions the following combinations of fundamental constants of Nature have respectively the dimensions of a mass, and of a length, the Planck-mass and the Planck-length,
9 |
|
|
|
9 |
|
|
|
c |
; |
|
G |
|
|||
μP = |
|
|
P = |
|
|
(5.6.4) |
|
|
G |
|
c3 |
where G is Newton’s constant, c is the velocity of light and is Planck’s constant. Secondly let us observe that in natural units where c = 1, the physical dimension of the m-form integral Lgrav is [Lgrav] = m−2, while the physical dimension of an action is [action] = μ × , having denoted by μ the mass dimension and by the